Synergetic Impact of Carbon Nanotube and/or Graphene Reinforcement on the Mechanical Performance of Glass Fiber/Epoxy Composite

Article Preview

Abstract:

The exceptional and distinctive properties of the allotropes of carbonaceous nanomaterials like carbon nanotubes and graphene have attracted many researchers and engineers to enhance the performance of fibrous polymeric composites. This article extrapolates the synergetic impact of carbon nanotube (CNT) and multi-layered graphene (MLG) reinforcement onto the mechanical performance of glass fiber/epoxy composites. Magnetic stirring and ultra-sonication process have been carried out under optimized parameters for incorporation of CNT-MLG into the epoxy polymer. Incorporation of 0.1wt% of carbon nanotube to the glass fiber/epoxy composites enhances a flexural strength of 10% and addition of 0.1 wt. % of multi layered graphene to the glass fiber/ epoxy composites enhances a flexural strength of 6% when differentiated with neat GE. Embodiment of 0.1 wt. % CNT and MLG to the glass fiber/epoxy composites in three different ratios like 1:1, 1:2 and 2:1 showcases a 13%, 12.25% and 14.7% enhancement in the flexural strength respectively with respect to the neat glass fiber/epoxy composites when tested at room temperature. Among them, the ratio 2:1(CNT: MLG) contributes higher strength due to the combined action of high aspect ratio of CNT and higher specific surface area of multi-layered graphene thus, facilitating efficient stress transfer from matrix to the reinforcements. Thermal characterizations have been carried out using differential scanning calorimetry (DSC). The fractography of the samples is examined through the scanning electron microscope.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

284-290

Citation:

Online since:

February 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.J. Shukla, D.S. Kumar, D.K. Rathore, R.K. Prusty, B.C. Ray, An assessment of flexural performance of liquid nitrogen conditioned glass/epoxy composites with multiwalled carbon nanotube, Journal of Composite Materials. 50 (2016) 3077–3088.

DOI: 10.1177/0021998315615648

Google Scholar

[2] I. Srikanth, S. Kumar, A. Kumar, P. Ghosal, C. Subrahmanyam, Effect of amino functionalized MWCNT on the crosslink density, fracture toughness of epoxy and mechanical properties of carbon-epoxy composites, Composites Part A: Applied Science and Manufacturing. 43 (2012) 2083–(2086).

DOI: 10.1016/j.compositesa.2012.07.005

Google Scholar

[3] I. Scarlatescu, M. Spunei, A. Chis, S. Negru, M. Bunoiu, N. Avram, Experimental dosimetric checkup under positioning errors according to gamma criterion, UPB Scientific Bulletin, Series A: Applied Mathematics and Physics. 80 (2018) 271–280.

Google Scholar

[4] B.C. Kim, S.W. Park, D.G. Lee, Fracture toughness of the nano-particle reinforced epoxy composite, Composite Structures. 86 (2008) 69–77.

DOI: 10.1016/j.compstruct.2008.03.005

Google Scholar

[5] D.K. Rathore, R.K. Prusty, D.S. Kumar, B.C. Ray, Mechanical performance of CNT-filled glass fiber/epoxy composite in in-situ elevated temperature environments emphasizing the role of CNT content, Composites Part A: Applied Science and Manufacturing. 84 (2016) 364–376.

DOI: 10.1016/j.compositesa.2016.02.020

Google Scholar

[6] R. Kumar Nayak, K. Kumar Mohata, B. Chandra Ray, Water Absorption Behavior, Mechanical and Thermal Properties of NanoTiO2 Enhanced Glass Fiber Reinforced Polymer Composites, Composites Part A: Applied Science and Manufacturing. (n.d.).

DOI: 10.1016/j.compositesa.2016.09.003

Google Scholar

[7] K.K. Mahato, D.K. Rathore, R.K. Prusty, K. Dutta, B.C. Ray, Tensile behavior of MWCNT enhanced glass fiber reinforced polymeric composites at various crosshead speeds, IOP Conf. Ser.: Mater. Sci. Eng. 178 (2017) 012006.

DOI: 10.1088/1757-899x/178/1/012006

Google Scholar

[8] T. Tsuda, T. Ogasawara, S.Y. Moon, K. Nakamoto, N. Takeda, Y. Shimamura, Y. Inoue, Stress transfer efficiency in aligned multi-wall carbon nanotubes sheet/epoxy composites, Composites Part A: Applied Science and Manufacturing. 67 (2014) 16–21.

DOI: 10.1016/j.compositesa.2014.07.004

Google Scholar

[9] Q. Cheng, J. Tang, J. Ma, H. Zhang, N. Shinya, L.C. Qin, Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density, Physical Chemistry Chemical Physics. 13 (2011) 17615–17624.

DOI: 10.1039/c1cp21910c

Google Scholar

[10] M. Tian, L. Qu, X. Zhang, K. Zhang, S. Zhu, X. Guo, G. Han, X. Tang, Y. Sun, Enhanced mechanical and thermal properties of regenerated cellulose/graphene composite fibers, Carbohydrate Polymers. 111 (2014) 456–462.

DOI: 10.1016/j.carbpol.2014.05.016

Google Scholar

[11] Z. Xu, J. Zhang, M. Shan, Y. Li, B. Li, J. Niu, B. Zhou, X. Qian, Organosilane-functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fluoride ultrafiltration membranes, Journal of Membrane Science. 458 (2014) 1–13.

DOI: 10.1016/j.memsci.2014.01.050

Google Scholar

[12] D. Višnjić, H. Lalić, V. Dembitz, H. Banfić, Metabolism and differentiation, Periodicum Biologorum. 116 (2014) 37–43.

Google Scholar

[13] D.R. Bortz, E.G. Heras, I. Martin-gullon, [21] Bortz elt 2011 Impressive Fatigue Life and Fracture Toughness.pdf, (2012) 238–245.

DOI: 10.1021/ma201563k

Google Scholar

[14] M.R. Zakaria, M.H. Abdul Kudus, H. Md. Akil, M.Z. Mohd Thirmizir, Comparative study of graphene nanoparticle and multiwall carbon nanotube filled epoxy nanocomposites based on mechanical, thermal and dielectric properties, Composites Part B: Engineering. 119 (2017) 57–66.

DOI: 10.1016/j.compositesb.2017.03.023

Google Scholar

[15] G.V. Seretis, G. Kouzilos, D.E. Manolakos, C.G. Provatidis, On the graphene nanoplatelets reinforcement of hand lay-up glass fabric/epoxy laminated composites, Composites Part B: Engineering. 118 (2017) 26–32.

DOI: 10.1016/j.compositesb.2017.03.015

Google Scholar

[16] S. Chatterjee, F. Nafezarefi, N.H. Tai, L. Schlagenhauf, F.A. Nüesch, B.T.T. Chu, Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites, Carbon. 50 (2012) 5380–5386.

DOI: 10.1016/j.carbon.2012.07.021

Google Scholar

[17] D.S. Kumar, M.J. Shukla, K.K. Mahato, D.K. Rathore, R.K. Prusty, B.C. Ray, Effect of post-curing on thermal and mechanical behavior of GFRP composites, in: IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2015: p.012012.

DOI: 10.1088/1757-899x/75/1/012012

Google Scholar

[18] S.K. Ghosh, P. Rajesh, B. Srikavya, D.K. Rathore, R.K. Prusty, B.C. Ray, Creep behaviour prediction of multi-layer graphene embedded glass fiber/epoxy composites using time-temperature superposition principle, Composites Part A: Applied Science and Manufacturing. 107 (2018) 507–518.

DOI: 10.1016/j.compositesa.2018.01.030

Google Scholar

[19] C. Kostagiannakopoulou, X. Tsilimigkra, G. Sotiriadis, V. Kostopoulos, Synergy effect of carbon nano-fillers on the fracture toughness of structural composites, Composites Part B: Engineering. 129 (2017) 18–25.

DOI: 10.1016/j.compositesb.2017.07.012

Google Scholar

[20] A.A. Moosa, A.R.S. A, F. Abdul, K. Kubba, M. Raad, Synergetic Effects of Graphene and Nonfunctionalized Carbon Nanotubes Hybrid Reinforced Epoxy Matrix on Mechanical , Thermal and Wettability Properties of Nanocomposites, 7 (2017) 1–11.

Google Scholar

[21] G. Tsagaropoulos, A. Eisenberg, Dynamic Mechanical Study of the Factors Affecting the Two Glass Transition Behavior of Filled Polymers. Similarities and Differences with Random Ionomers, Macromolecules. 28 (1995) 6067–6077.

DOI: 10.1021/ma00122a011

Google Scholar