[1]
Benito deCells, Ali S, Argon, Sidney Yip, Molecular dynamics simulation of crack tip processes in alpha-iron and copper. J. Appl. Phy., 1983 (54) 9, 4864-4878.
DOI: 10.1063/1.332796
Google Scholar
[2]
J. Prahl, A. Machova, A. Speilmannova, M. Karlik, M.Landa, P. Hausild, P. Lejcek, 2010. Ductile-Brittle behaviour at (110) [001] crack in bcc iron crystals loaded in mode I. Engg. Frac. Mech. ,77, 184-192.
DOI: 10.1016/j.engfracmech.2009.02.011
Google Scholar
[3]
Wen-Ping Wu, Zong-Zhuan Yao, 2012. Molecular dynamics simulation of stress distribution and microstructure ahead of a growing crack in single crystal nickel. Theoretical and Appl. Frac. Mech. 62, 67-75.
DOI: 10.1016/j.tafmec.2013.01.008
Google Scholar
[4]
Ya-Fang Guo, Chong-Yu Wang, Dong-Liang Zhao, 2003. Atomistic simulation of crack cleavage and blunting in bcc-Fe. Mat. Sci. and Engg. A, 349, 29-35.
DOI: 10.1016/s0921-5093(02)00287-3
Google Scholar
[5]
C.B. Cui, H.G. Beom, 2014. Molecular dynamics simulations of edge cracks in copper and aluminium single crystals. Mat. Sci. and Engg. A, 609, 102-109.
DOI: 10.1016/j.msea.2014.04.101
Google Scholar
[6]
A. Kedarnath, Ajay Singh Panwar, Rajeev Kapoor, 2017. Molecular dynamics simulation of the interaction of a nano-scale crack with grain boundaries in alpha-Fe. Comp. Mat. Sci., 137, 85-99.
DOI: 10.1016/j.commatsci.2017.05.026
Google Scholar
[7]
T. Shimokawa, M.Tanaka, K. Kinoshita, K. Higashida, 2011. Roles of grain boundaries in improving fracture toughness of ultrafine-grained metals. Phy. Rev. B, 83, 214113.
DOI: 10.1103/physrevb.83.214113
Google Scholar
[8]
T. Terentyev, F. Gao, 2013. Blunting of a brittle crack at grain boundaries: An atomistic study in BCC iron. Mat, Sci. and Engg. A, 576 231-238.
DOI: 10.1016/j.msea.2013.04.012
Google Scholar
[9]
Y. Cheng, Z.H. Jin, Y.W. Zhang, H.Gao, 2010. On intrinsic brittleness and ductility of intergranular fracture along symmetrical tilt grain boundaries in copper. Acta Mat., 58, 2293-2299.
DOI: 10.1016/j.actamat.2009.11.033
Google Scholar
[10]
M.I. Medelev, G.J. Ackland, 2007. Development of an interatomic potential for the simulation of phase transformations in zirconium. Phil. Mag. Lett., 87 (5), 349-359.
Google Scholar
[11]
Plimpton, S., 1995. Fast parallel algorithms for short range molecular dynamics. J.Comput.Phys. 117, 1-19.
Google Scholar
[12]
Stukowski,A., 2010. Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Modelling Simul. Mater. Sci. Eng. 18, 015012.
DOI: 10.1088/0965-0393/18/1/015012
Google Scholar
[13]
Divya Singh, Avinash Parashar (2018) Effect of symmetrical and asymmetrical tilt grain boundaries on radiation induced defects in zirconium. Journal of Physics D: Applied physics, 51,265301.
DOI: 10.1088/1361-6463/aac561
Google Scholar
[14]
Divya Singh, Avinash Parashar, Rajeev Kapoor, Apu Sarkar, A. Kedharnath (2019), Effect of symmetrical and asymmetrical tilt grain boundaries on the tensile deformation of zirconium bi-crystals: a MD based study. Journal of Materials science, 54, 3082-3095.
DOI: 10.1007/s10853-018-3032-7
Google Scholar
[15]
Divya Singh, Pankaj Sharma, Sahil Jindal, Prince Kumar, Piyush Kumar, Avinash Parashar (2018): Atomistic simulations to study crack tip behaviour in single crystal of bcc Niobium and hcp Zirconium. Current applied physics 19,37-43.
DOI: 10.1016/j.cap.2018.11.002
Google Scholar