[1]
X.Y. Liu, Z.K. Bai, W. Zhou, Y.G. Cao, G.J. Zhang, Changes in soil properties in the soil profile after mining and reclamation in an opencast coal mine on the Loess Plateau, China, J. Ecol Eng. 98 (2017): 228-239.
DOI: 10.1016/j.ecoleng.2016.10.078
Google Scholar
[2]
Q.T. Yi, K. Xie, P.F. Sun, Y. Kim, Characterization of phosphorus in the sedimentary environments of inundated agricultural soils around the Huainan Coal Mines, Anhui, China, J. Sci Total Environ. 472 (2014): 538-549.
DOI: 10.1016/j.scitotenv.2013.11.060
Google Scholar
[3]
W. Topp, K. Thelen, H. Kappes, Soil dumping techniques and afforestation drive ground-dwelling beetle assemblages in a 25-year-old open-cast mining reclamation area, J. Ecol Eng. 36 (2010): 751-756.
DOI: 10.1016/j.ecoleng.2009.12.011
Google Scholar
[4]
O. Arefieva, A.V. Nazarkina, N.V. Gruschakova, J.E. Skurikhina, V.B. Kolycheva, Impact of mine waters on chemical composition of soil in the Partizansk Coal Basin, Russia, J. International Soil and Water Conservation Research. 7 (2019): 57-63.
DOI: 10.1016/j.iswcr.2019.01.001
Google Scholar
[5]
R.K. Shrestha, R. Lal, Changes in physical and chemical properties of soil after surface mining and reclamation, J. Geoderma. 161 (2011): 168-176.
DOI: 10.1016/j.geoderma.2010.12.015
Google Scholar
[6]
J.M. Wang, J.R. Zhang, Y. Feng, Characterizing the spatial variability of soil particle size distribution in an underground coal mining area: An approach combining multi-fractal theory and geostatistics, J. Catena. 176 (2019): 94-103.
DOI: 10.1016/j.catena.2019.01.011
Google Scholar
[7]
L. Zhang, J. Wang, Z. Bai, C. Lv, Effects of vegetation on runoff and soil erosion on reclaimed land in an opencast coal-mine dump in a loess area, J. Catena. 128 (2015): 44-53.
DOI: 10.1016/j.catena.2015.01.016
Google Scholar
[8]
A. Mo, Y.Z. Zhou, J.J Yang, W. Liu, Q.D. Shi, H.Y. Lu, 2015. Influence of mountain coal mining on physical and chemical properties of soil, J. J Soil Water Conserv. 29 (2015): 86-89. (in Chinese).
Google Scholar
[9]
L. Xiao, Y.L. Bi, S.Z. Du, Y. Wang, C. Guo, Effects of re-vegetation type and arbuscular mycorrhizal fungal inoculation on soil enzyme activities and microbial biomass in coal mining subsidence areas of Northern China, J. Catena. 177 (2019): 202-209.
DOI: 10.1016/j.catena.2019.02.019
Google Scholar
[10]
T. Chen, Q.R. Chang, J. Liu, J.G.P.W. Clevers, Spatio-temporal variability of farmland soil organic matter and total nitrogen in the southern Loess Plateau, China: a case study in Heyang County, J. Environ Earth Sci. 75 (2016): 3-15.
DOI: 10.1007/s12665-015-4786-8
Google Scholar
[11]
E. Vidal-Vázquez, J. Paz-Ferreiro, S. Vieira, G. Topp, J. Miranda, A. Paz González, Fractal Description of the Spatial and Temporal Variability of Soil Water Content Across an Agricultural Field, J. Soil Sci. 177 (2012): 131-138.
DOI: 10.1097/ss.0b013e318241119a
Google Scholar
[12]
R.M. Liu, F. Xu, W.W. Yu, J.H. Shi, P.P. Zhang, Z.Y. Shen, Analysis of field-scale spatial correlations and variations of soil nutrients using geostatistics, J. Environ Monit Assess 188 (2016): 3-10.
DOI: 10.1007/s10661-016-5130-9
Google Scholar
[13]
X.P. Li, J.L. Liu, J.B. Zhang, W.P. Wang, W.W. Xin, Soil texture distribution simulation and risk assessment using transition probability-based geostatistics, J. Int Agrophys 28 (2014): 447-457.
DOI: 10.2478/intag-2014-0035
Google Scholar
[14]
B.R. Fitzpatrick, D.W. Lamb, K. Mengersen, Ultrahigh Dimensional Variable Selection for Interpolation of Point Referenced Spatial Data: A Digital Soil Mapping Case Study, J. PLoS One, 11 (2016): e162489.
DOI: 10.1371/journal.pone.0162489
Google Scholar
[15]
C. Carmen, B. Aline, V. Eric, G. Antoine, Generalizing soil properties in geographic space: Approaches used and ways forward, J. PLoS ONE. 12 (2018): e0208823.
DOI: 10.1371/journal.pone.0208823
Google Scholar
[16]
K. Adhikari, A.E. Hartemink, Linking soils to ecosystem services—A global review, J. Geoderma. 262 (2016): 101–11.
DOI: 10.1016/j.geoderma.2015.08.009
Google Scholar
[17]
S.J. Mathers, H.F. BURKE, R.L. Terrington, S. Thorpe, R.A. Dearden, J.P. Williamson, J.R. Ford, A geological model of London and the Thames Valley, southeast England, J. Proc. Geologists' Assoc. 125 (2014): 373-382.
DOI: 10.1016/j.pgeola.2014.09.001
Google Scholar
[18]
A. Chamrar, M. Oujidi, A.EI. Mandour, A. Jilali, 3D geological modeling of Gareb-Bouareg basin in northeast Morocco, J. Journal of African Earth Science. 154 (2019): 172-180.
DOI: 10.1016/j.jafrearsci.2019.03.023
Google Scholar
[19]
G. Wang, R. Li, E.J.M. Carranza, S. Zhang, C. Yan, Y. Zhu, J. Qu, D. Hong, Y. Song, J. Han, Z. Ma, H. Zhang, F. Yang, 3D geological modeling for prediction of subsurface Mo targets in the Luanchuan district, China, J. Ore Geol. Rev. 71 (2015): 592-610.
DOI: 10.1016/j.oregeorev.2015.03.002
Google Scholar
[20]
Y.K. Wu, G.M. Liu, L.T. Su, J.S. Yang, Response of three-dimensional spatial variability of soil salinity to change of season of Xinjiang based on electromagnetic induction, J. Transactions of the CASE. 3 (2017): 173-178. (in Chinese).
Google Scholar
[21]
E. Diamantopoulos, W. Durner, Physically-based model of soil hydraulic properties accounting for variable contact angle and its effect on hysteresis, J. Advances in Water Resources. 59 (2013): 169-180.
DOI: 10.1016/j.advwatres.2013.06.005
Google Scholar
[22]
A. Thomazini, M.R. Francelino, A.B. Pereira, A.L. Schünemann, E.S. Mendonça, C.E.G.R. Schaefer, The spatial variability structure of soil attributes using a detailed sampling grid in a typical periglacial area of Maritime Antarctica, J. Environ Earth Sci. 77 (2018): 3-15.
DOI: 10.1007/s12665-018-7818-3
Google Scholar
[23]
H.C. Ye, C.Y. Shen, Y.F. Huang, W.J. Huang, S.W. Zhang, X.H. Jia, Spatial variability of available soil microelements in an ecological functional zone of Beijing, J. Environ Monit Assess. 187 (2015): 7-12.
DOI: 10.1007/s10661-014-4230-7
Google Scholar
[24]
I. Bogunovic, P. Pereira, E.C. Brevik, Spatial distribution of soil chemical properties in an organic farm in Croatia, J. Science of The Total Environment. 584-585 (2017): 535-545.
DOI: 10.1016/j.scitotenv.2017.01.062
Google Scholar
[25]
A.G.L. Moraes, M.R. Francelino, W.G. Junior, M.G. Pereira, A. Thomazini, C.E.G.R. Schaefer, Environmental correlation and spatial autocorrelation of soil properties in keller Peninsula,Maritime Antarctica, J. R Bras C Solo 41 (2017): 1–9.
DOI: 10.1590/18069657rbcs20170021
Google Scholar
[26]
B.B. Trangmar, R.S. Yost, G. Uehara, Application of geostatistics to spatial studies of soil properties, J. Advance in Agronomy, VOL. 38 (2018): 45-93.
DOI: 10.1016/s0065-2113(08)60673-2
Google Scholar
[27]
J.M. Wang, J.R. Zhang, Y. Feng, Characterizing the spatial variability of soil particle size distribution in an underground coal mining area: An approach combining multi-fractal theory and geostatistics, J. Catena. 176 (2019): 94-103.
DOI: 10.1016/j.catena.2019.01.011
Google Scholar
[28]
Z. Yang, Y.X. Zhou, J. Wenninger, S. Uhlenbrook, A multi-method approach to quantify groundwater/surface water-interactions in the semi-arid Hailiutu River basin, northwest China, J. Hydrogeology Journal. 22 (2014): 527-541.
DOI: 10.1007/s10040-013-1091-z
Google Scholar
[29]
Y.Z. Wu, Y. Li, X.Q. Fu, X.L. Liu, J.L. Shen, Y. Wang, J.S. Wu, Three-dimensional spatial variability in soil microorganisms of nitrification and denitrefication at a row-transect scale in a tea field, J. Soil Biology & Biochemistry. 103(2016): 452-463.
DOI: 10.1016/j.soilbio.2016.09.013
Google Scholar
[30]
P. Goovaerts, Impact of the simulation algorithm, magnitude of ergodic fluctuations and number of realizations on the spaces of uncertainty of flow properties, J. Stoch Env Res Risk A. 13 (1999): 161-182.
DOI: 10.1007/s004770050037
Google Scholar
[31]
G. Gong, S. Mattevada, S.E. O'Bryant, Comparison of the accuracy of kriging and IDW interpolations in estimating groundwater arsenic concentrations in Texas, J. Environmental Research. 130 (2014): 59-69.
DOI: 10.1016/j.envres.2013.12.005
Google Scholar
[32]
Z.J. Liu, W. Zhou, J.B. Shen, P. He, Q.L Lei, G.Q Liang, A simple assessment on spatial variability of rice yield and selected soil chemical properties of paddy fields in South China, J. Geoderma 235-236 (2014):39-47.
DOI: 10.1016/j.geoderma.2014.06.027
Google Scholar
[33]
R.J. Yao, J.S. Yang, X.F. Zhao, X.M. Li, M.X. Liu, Three-dimensional stochastic simulation and uncertainty assessment on spatial distribution of soil salinity in coastal region, J. Transactions of the CASE 26 (2010):91-97. (in Chinese).
Google Scholar
[34]
Z.Q. Zhao, I. Shahrour, Z.K. Bai, W.X. Fan, L.R. Feng, H.F. Li, Soils development in opencast coal mine spoils reclaimed for 1–13 years in the West-Northern Loess Plateau of China, J. Eur J Soil Biol. 55 (2013): 40-46.
DOI: 10.1016/j.ejsobi.2012.08.006
Google Scholar
[35]
J.X. Chen, X.J. Nie, C.H. Liu, Spatial variation of soil organic carbon in coal-mining subsidence areas, J. Journal of China Coal Society. 39(2014): 2495-2500. (in Chinese).
Google Scholar
[36]
D. Finn, P.M. Kopittke, P.G. Dennis, R.C. Dalal, Microbial energy and matter transformation in agricultural soils, J. Soil Biology and Biochemistry. 111 (2017): 176-192.
DOI: 10.1016/j.soilbio.2017.04.010
Google Scholar