[1]
GAO Jingjing, LIU Jihua, LI Xianguo, et al. The determination of 52 elements in marine geological samples by an inductively coupled plasma optical emission spectrometry and an inductively coupled plasma mass spectrometry with a high-pressure closed digestion method[J]. Acta Oceanologica Sinica, 2017, 36(1):109-117.
DOI: 10.1007/s13131-017-0991-5
Google Scholar
[2]
Mi M, Ma X H, Ling Y, et al. Millimeter-Wave Power AlGaN/GaN HEMT Using Surface Plasma Treatment of Access Region[J]. IEEE Transactions on Electron Devices, 2017, 64(12):4875-4881.
DOI: 10.1109/ted.2017.2761766
Google Scholar
[3]
Nan H, Wu Z, Jiang J, et al. Improving the electrical performance of MoS2 by mild oxygen plasma treatment[J]. Journal of Physics D Applied Physics, 2017, 50(15):154001.
DOI: 10.1088/1361-6463/aa5c6a
Google Scholar
[4]
Canullo L, Genova T, Mandracci P, et al. Morphometric Changes Induced by Cold Argon Plasma Treatment on Osteoblasts Grown on Different Dental Implant Surfaces[J]. International Journal of Periodontics & Restorative Dentistry, 2017, 37(4):541.
DOI: 10.11607/prd.2916
Google Scholar
[5]
Elroz M, Lakiss L, Vicente A, et al. Ultra-fast framework stabilization of Ge-rich zeolites by low-temperature plasma treatment[J]. Chemical Science, 2018, 5(5):68-80.
DOI: 10.1039/c3sc51892b
Google Scholar
[6]
Wan Z, Yi C, Pankaj S K, et al. High voltage atmospheric cold plasma treatment of refrigerated chicken eggs for control of Salmonella Enteritidis contamination onegg shell[J]. LWT - Food Science and Technology, 2017, 76:124-130.
DOI: 10.1016/j.lwt.2016.10.051
Google Scholar
[7]
Duan S, Wang Y, Xia L, et al. Removal of U(VI) from aqueous solution by amino functionalized flake graphite prepared by plasma treatment[J]. Acs Sustainable Chemistry & Engineering, 2017, 5(5):4073-4085.
DOI: 10.1021/acssuschemeng.7b00069
Google Scholar
[8]
Ozturk S, Aydin L, Kucukdogan N, et al. Optimization of lapping processes of silicon wafer for photovoltaic applications[J]. Solar Energy, 2018, 164:1-11.
DOI: 10.1016/j.solener.2018.02.039
Google Scholar
[9]
Meng F, Liu J, Shen L, et al. High-quality industrial n-type silicon wafers with an efficiency of over 23% for Si heterojunction solar cells[J]. Frontiers in Energy, 2017, 11(1):1-7.
DOI: 10.1007/s11708-016-0435-5
Google Scholar
[10]
Kayabasi E, Ozturk S, Celik E, et al. Determination of cutting parameters for silicon wafer with a Diamond Wire Saw using an artificial neural network[J]. Solar Energy, 2017, 149:285-293.
DOI: 10.1016/j.solener.2017.04.022
Google Scholar
[11]
Liu X Q, Yu L, Ma Z C, et al. Silicon three-dimensional structures fabricated by femtosecond laser modification with dry etching.[J]. Appl Opt, 2017, 56(8):2157-2161.
DOI: 10.1364/ao.56.002157
Google Scholar
[12]
Stegemann B, Gad K M, Balamou P, et al. Ultra-thin silicon oxide layers on crystalline silicon wafers: Comparison of advanced oxidation techniques with respect to chemically abrupt SiO 2 /Si interfaces with low defect densities[J]. Applied Surface Science, 2017, 395:78-85.
DOI: 10.1016/j.apsusc.2016.06.090
Google Scholar
[13]
Mcintosh K R, Zin N, Nguyen H T, et al. Optical Evaluation of Silicon Wafers With Rounded Rear Pyramids[J]. IEEE Journal of Photovoltaics, 2017, 7(6):1596-1602.
DOI: 10.1109/jphotov.2017.2754060
Google Scholar
[14]
Gou X, Li X, Yu J, et al. Influence of crystal defect density of silicon wafers on potential‐induced degradation (PID) in solar cells and modules[J]. Physica Status Solidi, 2017, 214(12):e201700006.
DOI: 10.1002/pssa.201700006
Google Scholar
[15]
Parashar P K, Sharma R P, Komarala V K. Double-layer antireflection from silver nanoparticle integrated SiO2 layer on silicon wafer: effect of nanoparticle morphology and SiO2 film thickness[J]. Journal of Physics D Applied Physics, 2017, 50(3):035105.
DOI: 10.1088/1361-6463/50/3/035105
Google Scholar
[16]
Booth J P, Azamoum Y, Sirse N, et al. Absolute atomic chlorine densities in a Cl 2 inductively coupled plasma determined by two-photon laser-induced fluorescence with a new calibration method[J]. Journal of Physics D Applied Physics, 2017, 45(19):195201.
DOI: 10.1088/0022-3727/45/19/195201
Google Scholar
[17]
Siwulski M, Mleczek M, Rzymski P, et al. Screening the Multi-Element Content of Pleurotus Mushroom Species Using inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES)[J]. Food Analytical Methods, 2017, 10(2):487-496.
DOI: 10.1007/s12161-016-0608-1
Google Scholar
[18]
GUAN Ning-xin, ZHANG Gui-fen, CAO Kun-wu, et al. Determination of seven elements in aluminum bronze by inductively coupled plasma atomic emission spectrometry[J]. Metallurgical Analysis, 2017, 37(2):40-44.
Google Scholar
[19]
Drobyshev E J, Solovyev N D, Ivanenko N B, et al. Trace element biomonitoring in hair of school children from a polluted area by sector field inductively coupled plasma mass spectrometry[J]. Journal of Trace Elements in Medicine & Biology Organ of the Society for Minerals & Trace Elements, 2017, 39(Complete):14-20.
DOI: 10.1016/j.jtemb.2016.07.004
Google Scholar
[20]
Despiau-Pujo E, Chabert P, Bansropun S, et al. Simulations of radical and ion fluxes on a wafer in a Cl2/Ar inductively coupled plasma discharge: Confrontation with GaAs and GaN etch experiments[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2017, 28(4):693-701.
DOI: 10.1116/1.3437492
Google Scholar