[1]
Kaboli, F., et al., Upconverting Nanoengineered Surfaces: Maskless Photolithography for Security Applications. ACS Applied Nano Materials, 2019. 2(6): pp.3590-3596.
DOI: 10.1021/acsanm.9b00549
Google Scholar
[2]
Hu, X., et al., Directly Photopatternable Polythiophene as Dual-Tone Photoresist. Macromolecules, 2017. 50(18): pp.7258-7267.
DOI: 10.1021/acs.macromol.7b01208
Google Scholar
[3]
Ober, M.S., et al., Backbone Degradable Poly(aryl acetal) Photoresist Polymers: Synthesis, Acid Sensitivity, and Extreme Ultraviolet Lithography Performance. Macromolecules, 2019. 52(3): pp.886-895.
DOI: 10.1021/acs.macromol.8b01038.s001
Google Scholar
[4]
Kim, M., et al., Multiscale Simulation Approach on Sub-10 nm Extreme Ultraviolet Photoresist Patterning: Insights from Nanoscale Heterogeneity of Polymer. Macromolecules, 2018. 51(17): pp.6922-6935.
DOI: 10.1021/acs.macromol.8b01290
Google Scholar
[5]
Mora, M.F., et al., Patterning and Modeling Three-Dimensional Microfluidic Devices Fabricated on a Single Sheet of Paper. Analytical Chemistry, 2019. 91(13): pp.8298-8303.
DOI: 10.1021/acs.analchem.9b01020
Google Scholar
[6]
Wang, Y., et al., Fabrication of Well-Defined Mushroom-Shaped Structures for Biomimetic Dry Adhesive by Conventional Photolithography and Molding. ACS Applied Materials & Interfaces, 2014. 6(4): pp.2213-2218.
DOI: 10.1021/am4052393
Google Scholar
[7]
Sun, J., T. Xu and N.M. Litchinitser, Experimental Demonstration of Demagnifying Hyperlens. Nano Letters, 2016. 16(12): pp.7905-7909.
DOI: 10.1021/acs.nanolett.6b04175
Google Scholar
[8]
Moura, C.A.S., et al., Polarization Dependence in the Carbon K-Edge Photofragmentation of MAPDST Photoresist: An Experimental and Theoretical Study. The Journal of Physical Chemistry C, 2018. 122(50): pp.28619-28628.
DOI: 10.1021/acs.jpcc.8b07288
Google Scholar
[9]
Li, X., et al., Microfluidic Platform with In-Chip Electrophoresis Coupled to Mass Spectrometry for Monitoring Neurochemical Release from Nerve Cells. Analytical chemistry, 2016. 88(10): pp.5338-5344.
DOI: 10.1021/acs.analchem.6b00638
Google Scholar
[10]
Lee, B.R., et al., Highly Flexible and Transparent Memristive Devices Using Cross-Stacked Oxide/Metal/Oxide Electrode Layers. ACS Applied Materials & Interfaces, 2019. 11(5): pp.5215-5222.
DOI: 10.1021/acsami.8b17700
Google Scholar
[11]
Huang, L., et al., Bilayer Metasurfaces for Dual- and Broadband Optical Antireflection. ACS Photonics, 2017. 4(9): pp.2111-2116.
DOI: 10.1021/acsphotonics.7b00471
Google Scholar
[12]
Zhong, Y., et al., Highly Conductive, Photolithographically Patternable Ionogels for Flexible and Stretchable Electrochemical Devices. ACS Applied Materials & Interfaces, 2018. 10(25): pp.21601-21611.
DOI: 10.1021/acsami.8b03537
Google Scholar
[13]
Azizi, M., et al., Nanoliter-Sized Microchamber/Microarray Microfluidic Platform for Antibiotic Susceptibility Testing. Analytical Chemistry, 2018. 90(24): pp.14137-14144.
DOI: 10.1021/acs.analchem.8b03817
Google Scholar
[14]
Kim, T., et al., Electrically Tunable Slow Light Using Graphene Metamaterials. ACS Photonics, 2018. 5(5): pp.1800-1807.
DOI: 10.1021/acsphotonics.7b01551
Google Scholar
[15]
Jones, S.A., et al., Method for Tuneable Homeotropic Anchoring at Microstructures in Liquid Crystal Devices. Langmuir, 2018. 34(37): pp.10865-10873.
DOI: 10.1021/acs.langmuir.8b01951
Google Scholar
[16]
Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization). Role of the Free-Radical Leaving Group (R), Macromolecules 2003, 36, 2256-2272.
DOI: 10.1021/ma020882h
Google Scholar
[17]
Fehler, K.G., et al., Efficient Coupling of an Ensemble of Nitrogen Vacancy Center to the Mode of a High-Q, Si3N4 Photonic Crystal Cavity. ACS Nano, 2019. 13(6): pp.6891-6898.
DOI: 10.1021/acsnano.9b01668
Google Scholar
[18]
Xiao, W., et al., Patterning Multi-Nanostructured Poly(l-lactic acid) Fibrous Matrices to Manipulate Biomolecule Distribution and Functions. ACS Applied Materials & Interfaces, 2018. 10(10): pp.8465-8473.
DOI: 10.1021/acsami.7b18423
Google Scholar
[19]
Ekambaram, B.K., et al., Introduction of Laser Interference Lithography to Make Nanopatterned Surfaces for Fundamental Studies on Stem Cell Response. ACS Biomaterials Science & Engineering, 2018. 4(5): pp.1820-1832.
DOI: 10.1021/acsbiomaterials.8b00060
Google Scholar
[20]
Youichi Higuchi, Characterization of t-Butoxycarbonyloxy-containing Polymer and Its Application to Color Filter. Journal of Photopolymer Science and Technology. Vol.17, Num.1(2004)61-68.
DOI: 10.2494/photopolymer.17.61
Google Scholar
[21]
Pfammatter, M., et al., Absolute Quantification of Amyloid Propagons by Digital Microfluidics. Analytical Chemistry, 2017. 89(22): pp.12306-12313.
DOI: 10.1021/acs.analchem.7b03279
Google Scholar
[22]
Gong, H., et al., Biomembrane-Modified Field Effect Transistors for Sensitive and Quantitative Detection of Biological Toxins and Pathogens. ACS Nano, 2019. 13(3): pp.3714-3722.
DOI: 10.1021/acsnano.9b00911
Google Scholar
[23]
Pereira, M.J., et al., Application of Rubrene Air-Gap Transistors as Sensitive MEMS Physical Sensors. ACS Applied Materials & Interfaces, 2018. 10(48): pp.41570-41577.
DOI: 10.1021/acsami.8b15319
Google Scholar