Synthesis and Characterization of Plasmon-Enhanced SERS Substrate Based on Au-Ag Alloy-Coated, Large-Area Photonic (Methyl Methacrylate+Styrene) Co-Polymer

Article Preview

Abstract:

Enhancement of surface-enhanced Raman scattering (SERS) by metal nanoparticles has attracted considerable interest on account of their widespread popularity of SERS-based measurements and devices ranging from life science until materials science. Current study focuses on noble metal SERS substrates with attempting to achieve high and enhanced effect by describe a plasmon-enhanced SERS substrate based on gold-silver, alloy-coated co-polymer (methyl methacrylate-styrene) colloidal sphere. Copolymer was synthesised via surfactant-free emulsion polymerization and was successfully produced a homogeneous colloidal spheres. The homogenous spheres of copolymer would promote periodic array upon fabrication and more, introducing the copolymer medium had improved the thermal degradation of the material compare to single polymer. Gold-silver alloy nanospheres was synthesised via one pot reduction method using citrate stabilizer. The nanoalloy obtained are well within the nanoscale domain (<100 nm) supported by the maximum surface plasmon resonance peak at 436 nm using UV-Visible spectroscopy. The perfect combination of our proposed alloy nanoparticles and copolymer present an ability to enhance Raman scattering by higher than 90 %. The region of high electron density of the substrate is expected to develop a new opportunities for SERS detections in wide analytical area.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

14-19

Citation:

Online since:

March 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Lu, J.D. Joannopoulos, and M. Soljaˇci: Topological Photonics, physics.optic, arXiv:1408.6730v2, (2014) pp.1-12.

Google Scholar

[2] J.G. Bresco, D.N. Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B.D. Rouhani, F. Alzina, A. Martı´nez and C.M. Sotomayor Torres: Nature Communications Vol. 5 (2014), Pp. 1-6.

DOI: 10.1038/ncomms5452

Google Scholar

[3] W. Zhoua, D. Zhao, Yi-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, Jung-H. Seo, K.X. Wang, V. Liu, Z. Ma and S. Fan: Review: Progress in Quantum Electronics Vol. 38 (2014), p.1–74.

DOI: 10.1016/j.pquantelec.2014.01.001

Google Scholar

[4] S. Kassim, 2014. Polymer and metallodielectric based photonic crystals. Ph.D Thesis, University college cork.

Google Scholar

[5] L.M Liz-Marzan, M. Giersig and P. Mulvaney: Langmuir Vol. 12 (1996), pp.4329-4335.

Google Scholar

[6] S. Kassim and M. Pemble: Asian Journal of Chemistry Vol. 30 (2018), Pp. 1617-1620.

Google Scholar

[7] S.C. Padmanabhan, J. McGrath, M. Bardosova and M.E. Pemble: Journal of Material Chemistry Vol. 22(24) (2012), pp.11978-11987.

Google Scholar

[8] R.A.A. Tahrin and S. Kassim: IOP Conf. Series: Materials Science and Engineering Vol. 440 (2019), pp.1-8.

Google Scholar

[9] N.B. Muhamad W.M. Khairul and F. Yusoff: Journal of Solid State Chemistry Vol. 275 (2019), pp.30-37.

Google Scholar

[10] S. Kassim, S.C. Padmanabhan, M. Salaun and M.E. Pemble: AIP Conference Proceeding Vol. 1391 (2011), pp.263-265.

Google Scholar

[11] S. Kassim and N. Azman: Progress in Industrial Ecology Vol. 12 (2018), pp.321-329.

Google Scholar

[12] R.A.A. Tahrin, N.S. Azma, S. Kassim and N.A. Harun: AIP Conference Proceedings Vol. 1885 (2017), pp.1-9.

Google Scholar

[13] J.P. Juste, I.P Santoz, L.M. Liz-Marzan and P. Mulvaney: Coordination Chemistry Reviews Vol. 249 (2005), pp.1870-1901.

Google Scholar

[14] H. Ahmad, R.A.A. Tahrin, N. Azman, S. Kassim, M.A. Ismail and M.J. Maah: Optic Communications Vol. 403, pp.115-120.

DOI: 10.1016/j.optcom.2017.06.094

Google Scholar

[15] Q. Han, C. Zhang, W. Gao, Z. Han, T. Liu, C. Li, Z. Wang, E. He and H. Zheng: Sensors and Actuators B Vol. 231 (2016), p.609–614.

Google Scholar

[16] M. Altunbek, G. Kuku and M. Culha: Molecules Vol. 21 (2016), pp.1-18.

Google Scholar

[17] G.M. Herrera, A.C. Padilla and S. P. Hernandez-Rivera: Nanomaterials Vol. 3 (2013), pp.158-172.

Google Scholar

[18] Q. Han, C. Zhang, W. Gao, Z. Han, T. Liu, C. Li, Z. Wang, E. He and H. Zheng: Sensor an Actuators B: Chemical 231 (2016). Pp. 609-614.

Google Scholar

[19] S. Kassim, S.B. Zahari, R.A.A. Tahrin and N.A. Harun: AIP Conference Proceedings Vol. 1885 (2017), pp.1-8.

Google Scholar

[20] Y. Li, K. Zhang, J. Zhao, J. Ji, C. Ji and B. Liu: Talanta Vol. 147 (2016), p.493–500.

Google Scholar

[21] T. Kohoutek, M. Parchine, M. Bardosova, H. Fudouzi and M. Pemble: Optical Material Express Vol. 8 (2018), pp.960-967.

DOI: 10.1364/ome.8.000960

Google Scholar

[22] D. Kim, J. Resasco, Y. Yu, A.M. Asiri and P.D. Yang: Natural Communication Vol. 52 (2014), p.4948–4956.

Google Scholar

[23] G.V. Pavan Kumar, S. Shruthi, B. Vibha, B.A. Ashok Reddy, T.K. Kundu and C. Narayana: Journal Physicsl Chemistry C Vol. 111 (2007), pp.4388-4392.

Google Scholar