Photocatalytic Performance of PVP-Doped TiO2 Nanorod Arrays Prepared by Hydrothermal Method

Article Preview

Abstract:

Here we synthesized a high-density single crystal anatase phase TiO2/ITO nanorods array composite by one-step hydrothermal method. TiCl4, H2O, and HCl were used as the titanium precu-rsor, oxygen source, and inhibitors, respectively. The TiO2 nanorods array were analyzed using X-ray diffraction (XRD), energy dispersive X-ray spectrometer (EDX), scanning electron microscopy (SEM), optical contact angle tester and ultraviolet-fluorescence spectrophotometer, separately. The nanorods in the composite grew along the [101] crystal plane, with a diameter of about 500 nm and a length of about 3 μm. The effect of PVP addition on the crystal phase and morphology of TiO2 na-norod arrays was investigated. When the amount of PVP added was 0.5g, the diameter of nanorods was about 77-120nm, and a neat array structure appeared. In the photocatalytic experiment, methyl orange and acid red were used as degraded materials, the photocatalytic degradation rate was up to about 100%. When the hydrophilicity was the best, the optical contact angle of the sample after ultr-aviolet light irradiation was 7.2°. These results indicated that TiO2 after doping experiments got better photocatalytic properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

67-74

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Zhou CY, Ren ZF, Tan SJ, Ma ZB, Mao XC, Dai DX, Fan HJ, Yang XM, LaRue J, Cooper R, Wodtke AM, Wang AM, Wang Z, Li ZY, Wang B, Yang JL, Hou JG. Site-specific photocatalytic splitting of methanol on TiO2 (110). Chemical Science, 2010, 1, 575-580.

DOI: 10.1039/c0sc00316f

Google Scholar

[2] N.C. Jeong, O.K. Farha, J.T. Hupp, A convenient route to high area, nanoparticulate TiO2 photoelectrodes suitable for high-efficiency energy conversion in dye-sensitized solar cells, Langmuir .27 (2011) 1996–(1999).

DOI: 10.1021/la104297s

Google Scholar

[3] Zhou, Y.; Zhu, Q.; Tian, J.; Jiang, F. TiO2 nanobelt@Co9S8 composites as promising anode materials for lithium and sodium ion batteries. Nanomaterials.7 (2017) 252–262.

DOI: 10.3390/nano7090252

Google Scholar

[4] Y.J. Hwang, C. Hahn, B. Liu, P. Yang, Photoelectrochemical properties of TiO2 nanowire arrays: a study of the dependence on length and atomic layer deposition coating, ACS Nano .6 (2012) 5060–5069.

DOI: 10.1021/nn300679d

Google Scholar

[5] H. Zhang, X. Liu, Y. Li, Q. Sun, Y. Wang, B.J. Wood, P. Liu, D. Yang, H. Zhao, Vertically aligned nanorod-like rutile TiO2 single crystal nanowire bundles with superior electron transport and photoelectrocatalytic properties, Journal of Materials Chemistry .22 (2012) 2465-2472.

DOI: 10.1039/c2jm15546j

Google Scholar

[6] L. Mancic, R.F.M. Osman, A.M.L.M. Costa, J.R.M. d'Almeida, B.A. Marinkovic, F.C. Rizzo, Mater. Des. 83 (2015) 459–467.

Google Scholar

[7] Kusior, A.; Kollbek, K.; Kowalski, K.; Borysiewicz, M.; Wojciechowski, T.; Adamczyk, A.; Trenczek-Zajac, A.; Radecka, M.; Zakrzewska, K. Sn and Cu oxide nanoparticles deposited on TiO2 nanoflower 3D substrates by inert gas condensation technique. Appl. Surf. Sci. 380 (2016)193–202.

DOI: 10.1016/j.apsusc.2016.01.204

Google Scholar

[8] Leary R, Westwood A. Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon, 2011, 49: 741-772.

DOI: 10.1016/j.carbon.2010.10.010

Google Scholar

[9] Liu C, Daspupta N P, Yang P D. Semiconductor nanowires for artificial Photosynthesis. Chemistry of Materials, 2014, 26(1): 415-422.

Google Scholar

[10] Feng X, Shankar K, Varghese O K, et al. Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated Glass:synthesis details and applications. Nano Letters, 2008, 8(11): 3781-3786.

DOI: 10.1021/nl802096a

Google Scholar

[11] Meng S, Ren J, Kaxiras E. Natural dyes adsorbed on TiO2 nanowire for photovoltaic applications: enhanced light absorption and ultrafast electron injection. Nano Letters, 2008, 8(10): 3266-3272.

DOI: 10.1021/nl801644d

Google Scholar

[12] P. H. Wang, L. G. Yang, L. Z. Wang and J. L. Zhang, Mater. Lett. 164 (2016) 405-408.

Google Scholar

[13] A. Crisbasan, D. Chaumont, M. Sacilotti, A. M. Lazar, I. Ciobanu, Y. Lacroute and R. Chassagnon, Appl. Surf. Sci. 358 (2015) 655-659.

DOI: 10.1016/j.apsusc.2015.09.113

Google Scholar

[14] W. zhao, X. J Feng, H. D. Xiao, C. N. Luan and J. Ma, J. Cryst. Growth 453(2016) 106-110.

Google Scholar

[15] C.L. Wang, W. S. Hwang, H. L. Chu, H. J. Lin, H. H. Ko and M. Chin, Ceram. Int. 42 (2016) 13136-13143.

Google Scholar

[16] Y. H. Yu, Y. L. Jiang, M. Tian, L. J. Yang, H. J. Yan and S. Sheng, Rare Met. 45(2016) 561-566.

Google Scholar

[17] Y.N. Zhang, Y. Han and L. Zhang, Thin Solid Films 583 (2015) 151-157.

Google Scholar

[18] W.Y. Zhou and Y. C. He, Chem. Eng. J. 179 (2012) 412-416.

Google Scholar

[19] Q.G. He, J. Zhuang, Q. X. Wen, Y. Deng, J. Yu, and H. M. Li, NANO, 11 (2016) 1650066.

Google Scholar

[20] M. Marandi, M. N. S. Sabet and F. Ahmadloo, B MATER SCI 39 (2016) 1403-1410.

Google Scholar

[21] S.R. Moulik, A. Ghatak and B. Ghosh, Surf. Sci. 651 (2016) 175-181.

Google Scholar

[22] B. Ivo, M. Vlastimil and M. J. Josef, Photobiol., A 317 (2016) 72-80.

Google Scholar

[23] Z.H Liu, X.J Su, G.L Hou, S Bi, Z Xiao, H.P Jia, Hierarchical TiO2 nanorod array for dye-sensitized solar cells, Mater. Lett. 89 (2012) 309–311.

DOI: 10.1016/j.matlet.2012.08.135

Google Scholar