[1]
L. Chengdu, L. Zuojiang, D. Sheng, Mesoporous Carbon Materials: Synthesis and Modification, Angew. Chem. Int. Ed., 47 (2008) 3696-3717.
Google Scholar
[2]
J. Zhao, C. Lai, Y. Dai, J. Xie, Pore structure control of mesoporous carbon as supercapacitor material, Mater. Lett., 61 (2007) 4639-4642.
DOI: 10.1016/j.matlet.2007.02.071
Google Scholar
[3]
H. Wang, X. Li, Z. Ma, D. Wang, L. Wang, J. Zhan, L. She, F. Yang, Hydrophilic mesoporous carbon nanospheres with high drug-loading efficiency for doxorubicin delivery and cancer therapy, Int. J. Nanomed., 11 (2016) 1793-1806.
DOI: 10.2147/ijn.s103020
Google Scholar
[4]
P. Qi, S. Chen, J. Chen, J. Zheng, X. Zheng, Y. Yuan, Catalysis and Reactivation of Ordered Mesoporous Carbon-Supported Gold Nanoparticles for the Base-Free Oxidation of Glucose to Gluconic Acid, ACS Catal., 5 (2015) 2659-2670.
DOI: 10.1021/cs502093b
Google Scholar
[5]
R. Ryoo, S.H. Joo, S. Jun, Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation, J. Phys. Chem. B, 103 (1999) 7743-7746.
DOI: 10.1021/jp991673a
Google Scholar
[6]
Y. Xie, D. Kocaefe, C. Chen, Y. Kocaefe, Review of Research on Template Methods in Preparation of Nanomaterials, J. Nanomater., 2016 (2016) 10.
DOI: 10.1155/2016/2302595
Google Scholar
[7]
A. Thomas, F. Goettmann, M. Antonietti, Hard Templates for Soft Materials: Creating Nanostructured Organic Materials, Chem. Mater., 20 (2008) 738-755.
DOI: 10.1021/cm702126j
Google Scholar
[8]
D. Tang, S. Hu, F. Dai, R. Yi, M.L. Gordin, S. Chen, J. Song, D. Wang, Self-Templated Synthesis of Mesoporous Carbon from Carbon Tetrachloride Precursor for Supercapacitor Electrodes, ACS Appl. Mater. Interfaces, 8 (2016) 6779-6783.
DOI: 10.1021/acsami.5b12164
Google Scholar
[9]
W. Dai, M. AU - Zheng, Y. AU - Zhao, S. AU - Liao, G. AU - Ji, J. AU - Cao, Template Synthesis of Three-Dimensional Cubic Ordered Mesoporous Carbon With Tunable Pore Sizes, Nanoscale Res. Lett, 5 (2010) 103–107.
DOI: 10.1007/s11671-009-9450-3
Google Scholar
[10]
S. Che, Y. Sakamoto, O. Terasaki, T. Tatsumi, Control of Crystal Morphology of SBA-1 Mesoporous Silica, Chem. Mater., 13 (2001) 2237-2239.
DOI: 10.1021/cm010297f
Google Scholar
[11]
A. Sayari, Y. Yang, SBA-15 Templated Mesoporous Carbon: New Insights into the SBA-15 Pore Structure, Chem. Mater., 17 (2005) 6108-6113.
DOI: 10.1021/cm050960q
Google Scholar
[12]
M. Kruk, M. Jaroniec, A. Sayari, Application of Large Pore MCM-41 Molecular Sieves To Improve Pore Size Analysis Using Nitrogen Adsorption Measurements, Langmuir, 13 (1997) 6267-6273.
DOI: 10.1021/la970776m
Google Scholar
[13]
T.-W. Kim, P.-W. Chung, V.S.Y. Lin, Facile Synthesis of Monodisperse Spherical MCM-48 Mesoporous Silica Nanoparticles with Controlled Particle Size, Chem. Mater., 22 (2010) 5093-5104.
DOI: 10.1021/cm1017344
Google Scholar
[14]
K. Wang, Y. Lin, M.A. Morris, J.D. Holmes, Preparation of MCM-48 materials with enhanced hydrothermal stability, J. Mater. Chem., 16 (2006) 4051-4057.
DOI: 10.1039/b607599a
Google Scholar
[15]
H.I. Meléndez-Ortiz, L.A. García-Cerda, Y. Olivares-Maldonado, G. Castruita, J.A. Mercado-Silva, Y.A. Perera-Mercado, Preparation of spherical MCM-41 molecular sieve at room temperature: Influence of the synthesis conditions in the structural properties, Ceram. Int., 38 (2012) 6353-6358.
DOI: 10.1016/j.ceramint.2012.05.007
Google Scholar
[16]
I. Garcia-Lodeiro, A. Palomo, A. Fernández-Jiménez, 3 - Crucial insights on the mix design of alkali-activated cement-based binders, in: F. Pacheco-Torgal, J.A. Labrincha, C. Leonelli, A. Palomo, P. Chindaprasirt (Eds.) Handbook of Alkali-Activated Cements, Mortars and Concretes, Woodhead Publishing, Oxford, 2015, pp.49-73.
DOI: 10.1533/9781782422884.1.49
Google Scholar
[17]
I. Kusnír, Mineral resources of Vietnam, Acta Montanistica Slovaca Ročník 5 (2000), 2, 165-172.
Google Scholar
[18]
N.P. Lê Đỗ Trí, Nguyễn Trọng Toan, Potential of kaolin in Viet Nam and orientation of exploratory works and exploitation serving the socio-economic develpment, Journal of Geology (Vietnam), 307 (2008) 75-81.
Google Scholar
[19]
I.S. Ismael, Synthesis and characterization of zeolite X obtained from kaolin for adsorption of Zn(II), Chinese Journal of Geochemistry, 29 (2010) 130-136.
DOI: 10.1007/s11631-010-0130-x
Google Scholar
[20]
W. Chunyan, Z. Jiti, W. Yu, Y. Minxia, L. Yiwen, M. Changgong, Synthesis of zeolite X from low‐grade bauxite, J. Chem. Technol. Biotechnol, 88 (2013) 1350-1357.
Google Scholar
[21]
F. Zhang, C. Sun, S. Li, L. Yang, X. Chao, Synthesis of SBA-15 using natural clay from low-grade potash ores of a salt lake in Qinghai, China, Proceedings of the 2015 2nd International Workshop on Materials Engineering and Computer Sciences, (2015).
DOI: 10.2991/iwmecs-15.2015.110
Google Scholar
[22]
L.Y. Shi, Y.M. Wang, A. Ji, L. Gao, Y. Wang, In situ direct bifunctionalization of mesoporous silica SBA-15, J. Mater. Chem., 15 (2005) 1392-1396.
DOI: 10.1039/b418014n
Google Scholar
[23]
Y. Xie, B. Yan, C. Tian, Y. Liu, Q. Liu, H. Zeng, Efficient removal of elemental mercury (Hg0) by SBA-15-Ag adsorbents, J. Mater. Chem. A, 2 (2014) 17730-17734.
DOI: 10.1039/c4ta04147j
Google Scholar
[24]
D. Aldhayan, A. Aouissi, Gas Phase Oligomerization of Isobutene over Acid Treated Kaolinite Clay Catalyst, Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2017) 119.
DOI: 10.9767/bcrec.12.1.758.119-126
Google Scholar
[25]
C.O. Mgbemena, N.O. Ibekwe, R. Sukumar, A.R.R. Menon, Characterization of kaolin intercalates of oleochemicals derived from rubber seed (Hevea brasiliensis) and tea seed (Camelia sinensis) oils, Journal of King Saud University - Science, 25 (2013) 149-155.
DOI: 10.1016/j.jksus.2012.11.004
Google Scholar
[26]
M. Glid, I. Sobrados, H. ben rhaiem, J. Sanz, A. Ben Haj Amara, Alkaline activation of metakaolinite-silica mixtures: Role of dissolved silica concentration on the formation of geopolymers, (2017).
DOI: 10.1016/j.ceramint.2017.06.144
Google Scholar
[27]
X. Chen, S. Peng, J. Wang, Retention profile and kinetics characteristics of the radionuclide 90-Sr(II) onto kaolinite, J. Radioanal. Nucl. Chem., 303 (2015) 509-519.
DOI: 10.1007/s10967-014-3458-6
Google Scholar
[28]
B. A., D. Z., I. A., L. M., A study of the factors controlling the adsorption of Cr(III) on modified montmorillonites, Eur. J. Soil. Sci., 52 (2001) 683-692.
DOI: 10.1046/j.1365-2389.2001.00413.x
Google Scholar
[29]
K.L. Konan, C. Peyratout, A. Smith, J.P. Bonnet, S. Rossignol, S. Oyetola, Comparison of surface properties between kaolin and metakaolin in concentrated lime solutions, J. Colloid Interface Sci., 339 (2009) 103-109.
DOI: 10.1016/j.jcis.2009.07.019
Google Scholar
[30]
M. Glid, I. Sobrados, H.B. Rhaiem, J. Sanz, A.B.H. Amara, Alkaline activation of metakaolinite-silica mixtures: Role of dissolved silica concentration on the formation of geopolymers, Ceram. Int., 43 (2017) 12641-12650.
DOI: 10.1016/j.ceramint.2017.06.144
Google Scholar
[31]
Z. Luo, T. Yu, Z. Ni, S. Lim, H. Hu, J. Shang, L. Liu, Z. Shen, J. Lin, Electronic Structures and Structural Evolution of Hydrogenated Graphene Probed by Raman Spectroscopy, J. Phys. Chem. C, 115 (2011) 1422-1427.
DOI: 10.1021/jp107109h
Google Scholar
[32]
D. Yuan, F. Zeng, J. Yan, X. Yuan, X. Huang, W. Zou, A novel route for preparing graphitic ordered mesoporous carbon as electrochemical energy storage material, RSC Adv., 3 (2013) 5570-5576.
DOI: 10.1039/c3ra40677f
Google Scholar
[33]
K. Kinoshita, Carbon: electrochemical and physicochemical properties, (1988).
Google Scholar
[34]
J.L. Bahr, J.M. Tour, Covalent chemistry of single-wall carbon nanotubes, J. Mater. Chem., 12 (2002) 1952-1958.
DOI: 10.1039/b201013p
Google Scholar
[35]
L.H. I., K.J. H., Y.D. J., L.J. E., K.J. M., A.W. S., P. C., J.S. H., C. H., S. D., Rational Synthesis Pathway for Ordered Mesoporous Carbon with Controllable 30‐ to 100‐Angstrom Pores, Adv. Mater., 20 (2008) 757-762.
DOI: 10.1002/adma.200702209
Google Scholar
[36]
B. Chao, M.I. Konggidinata, L. Lin, M. Zappi, D.D. Gang, Effect of carbon precursors and pore expanding reagent on ordered mesoporous carbon for resorcinol removal, Journal of Water Process Engineering, 17 (2017) 256-263.
DOI: 10.1016/j.jwpe.2017.05.002
Google Scholar
[37]
Z. Lei, D. Bai, X.S. Zhao, Improving the electrocapacitive properties of mesoporous CMK-5 carbon with carbon nanotubes and nitrogen doping, Microporous Mesoporous Mater., 147 (2012) 86-93.
DOI: 10.1016/j.micromeso.2011.06.002
Google Scholar
[38]
Q. Lu, Y.-y. Xu, S.-j. Mu, W.-c. Li, The effect of nitrogen and/or boron doping on the electrochemical performance of non-caking coal-derived activated carbons for use as supercapacitor electrodes, New Carbon Materials, 32 (2017) 442-450.
DOI: 10.1016/s1872-5805(17)60133-1
Google Scholar
[39]
D. Mattia, M.P. Rossi, B.M. Kim, G. Korneva, H.H. Bau, Y. Gogotsi, Effect of Graphitization on the Wettability and Electrical Conductivity of CVD-Carbon Nanotubes and Films, J. Phys. Chem. B, 110 (2006) 9850-9855.
DOI: 10.1021/jp061138s
Google Scholar
[40]
X. Ji, P.S. Herle, Y. Rho, L.F. Nazar, Carbon/MoO2 Composite Based on Porous Semi-Graphitized Nanorod Assemblies from In Situ Reaction of Tri-Block Polymers, Chem. Mater., 19 (2007) 374-383.
DOI: 10.1021/cm060961y
Google Scholar