Synthesis of Ordered Mesoporous Carbon from Vietnam Natural Kaolin Clay for Supercapacitor Application

Article Preview

Abstract:

In nature, kaolin clay is referred to a readily available cheap source of silicon and used in various fields such as the paper, ceramic, paint, plastic, rubber, and cracking catalyst industries. This paper introduces utilization of natural kaolin clay for a new application. In particular, the kaolin clay is used as a new raw material for synthesis of ordered mesoporous carbon (OMC) materials, which serve as electrode active materials for supercapacitors. Kaoline used in the present work is originated from Yen Bai province (Vietnam). After subjected several steps of the treatment process, silica present in the kaolin clay is converted to sodium silicate and used directly as a source of silicon for the synthesis process of mesoporous porous silica (SBA-15). The synthesized SBA-15 mesoporous silicas exhibit rod-like nanostructure with the specific area of 432.7 m2 g-1 and the mean pore size of 7-8 nm. Subsequently, SBA-15 silica serves as hard template for preparation of OMCs by using nanocasting method. The OMCs carbonized at different temperatures in the absence and presence of boric acid reveal highly ordered mesoporous structure with the highest specific area of 1039.2 m2 g-1 and the mean pore size ranging from 6 to 7 nm. As used as electrode active material in 6 M KOH aqueous solution, the resultant OMCs exhibit excellent capacitive performance with a specific capacitance higher than 80 F g-1 at a scan rate of 5 mV s-1. The obtained results show that, in addition to the high specific area, the electrical conductivity also plays an important role in enhancing energy storage ability of the OMC electrodes. At the same carbonization temperature, the high surface area plays crucial role. However, at the higher carbonization temperatures, effect of the electrical conductivity of the materials prevails over the high surface area. This study illustrates highly application feasibility of Vietnam natural kaolin clay as available and cheap raw material source for synthesis of electrode active materials with the high supercapacitive performance for electrochemical double layer capacitors.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

124-136

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Chengdu, L. Zuojiang, D. Sheng, Mesoporous Carbon Materials: Synthesis and Modification, Angew. Chem. Int. Ed., 47 (2008) 3696-3717.

Google Scholar

[2] J. Zhao, C. Lai, Y. Dai, J. Xie, Pore structure control of mesoporous carbon as supercapacitor material, Mater. Lett., 61 (2007) 4639-4642.

DOI: 10.1016/j.matlet.2007.02.071

Google Scholar

[3] H. Wang, X. Li, Z. Ma, D. Wang, L. Wang, J. Zhan, L. She, F. Yang, Hydrophilic mesoporous carbon nanospheres with high drug-loading efficiency for doxorubicin delivery and cancer therapy, Int. J. Nanomed., 11 (2016) 1793-1806.

DOI: 10.2147/ijn.s103020

Google Scholar

[4] P. Qi, S. Chen, J. Chen, J. Zheng, X. Zheng, Y. Yuan, Catalysis and Reactivation of Ordered Mesoporous Carbon-Supported Gold Nanoparticles for the Base-Free Oxidation of Glucose to Gluconic Acid, ACS Catal., 5 (2015) 2659-2670.

DOI: 10.1021/cs502093b

Google Scholar

[5] R. Ryoo, S.H. Joo, S. Jun, Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation, J. Phys. Chem. B, 103 (1999) 7743-7746.

DOI: 10.1021/jp991673a

Google Scholar

[6] Y. Xie, D. Kocaefe, C. Chen, Y. Kocaefe, Review of Research on Template Methods in Preparation of Nanomaterials, J. Nanomater., 2016 (2016) 10.

DOI: 10.1155/2016/2302595

Google Scholar

[7] A. Thomas, F. Goettmann, M. Antonietti, Hard Templates for Soft Materials: Creating Nanostructured Organic Materials, Chem. Mater., 20 (2008) 738-755.

DOI: 10.1021/cm702126j

Google Scholar

[8] D. Tang, S. Hu, F. Dai, R. Yi, M.L. Gordin, S. Chen, J. Song, D. Wang, Self-Templated Synthesis of Mesoporous Carbon from Carbon Tetrachloride Precursor for Supercapacitor Electrodes, ACS Appl. Mater. Interfaces, 8 (2016) 6779-6783.

DOI: 10.1021/acsami.5b12164

Google Scholar

[9] W. Dai, M. AU - Zheng, Y. AU - Zhao, S. AU - Liao, G. AU - Ji, J. AU - Cao, Template Synthesis of Three-Dimensional Cubic Ordered Mesoporous Carbon With Tunable Pore Sizes, Nanoscale Res. Lett, 5 (2010) 103–107.

DOI: 10.1007/s11671-009-9450-3

Google Scholar

[10] S. Che, Y. Sakamoto, O. Terasaki, T. Tatsumi, Control of Crystal Morphology of SBA-1 Mesoporous Silica, Chem. Mater., 13 (2001) 2237-2239.

DOI: 10.1021/cm010297f

Google Scholar

[11] A. Sayari, Y. Yang, SBA-15 Templated Mesoporous Carbon:  New Insights into the SBA-15 Pore Structure, Chem. Mater., 17 (2005) 6108-6113.

DOI: 10.1021/cm050960q

Google Scholar

[12] M. Kruk, M. Jaroniec, A. Sayari, Application of Large Pore MCM-41 Molecular Sieves To Improve Pore Size Analysis Using Nitrogen Adsorption Measurements, Langmuir, 13 (1997) 6267-6273.

DOI: 10.1021/la970776m

Google Scholar

[13] T.-W. Kim, P.-W. Chung, V.S.Y. Lin, Facile Synthesis of Monodisperse Spherical MCM-48 Mesoporous Silica Nanoparticles with Controlled Particle Size, Chem. Mater., 22 (2010) 5093-5104.

DOI: 10.1021/cm1017344

Google Scholar

[14] K. Wang, Y. Lin, M.A. Morris, J.D. Holmes, Preparation of MCM-48 materials with enhanced hydrothermal stability, J. Mater. Chem., 16 (2006) 4051-4057.

DOI: 10.1039/b607599a

Google Scholar

[15] H.I. Meléndez-Ortiz, L.A. García-Cerda, Y. Olivares-Maldonado, G. Castruita, J.A. Mercado-Silva, Y.A. Perera-Mercado, Preparation of spherical MCM-41 molecular sieve at room temperature: Influence of the synthesis conditions in the structural properties, Ceram. Int., 38 (2012) 6353-6358.

DOI: 10.1016/j.ceramint.2012.05.007

Google Scholar

[16] I. Garcia-Lodeiro, A. Palomo, A. Fernández-Jiménez, 3 - Crucial insights on the mix design of alkali-activated cement-based binders, in: F. Pacheco-Torgal, J.A. Labrincha, C. Leonelli, A. Palomo, P. Chindaprasirt (Eds.) Handbook of Alkali-Activated Cements, Mortars and Concretes, Woodhead Publishing, Oxford, 2015, pp.49-73.

DOI: 10.1533/9781782422884.1.49

Google Scholar

[17] I. Kusnír, Mineral resources of Vietnam, Acta Montanistica Slovaca Ročník 5 (2000), 2, 165-172.

Google Scholar

[18] N.P. Lê Đỗ Trí, Nguyễn Trọng Toan, Potential of kaolin in Viet Nam and orientation of exploratory works and exploitation serving the socio-economic develpment, Journal of Geology (Vietnam), 307 (2008) 75-81.

Google Scholar

[19] I.S. Ismael, Synthesis and characterization of zeolite X obtained from kaolin for adsorption of Zn(II), Chinese Journal of Geochemistry, 29 (2010) 130-136.

DOI: 10.1007/s11631-010-0130-x

Google Scholar

[20] W. Chunyan, Z. Jiti, W. Yu, Y. Minxia, L. Yiwen, M. Changgong, Synthesis of zeolite X from low‐grade bauxite, J. Chem. Technol. Biotechnol, 88 (2013) 1350-1357.

Google Scholar

[21] F. Zhang, C. Sun, S. Li, L. Yang, X. Chao, Synthesis of SBA-15 using natural clay from low-grade potash ores of a salt lake in Qinghai, China, Proceedings of the 2015 2nd International Workshop on Materials Engineering and Computer Sciences, (2015).

DOI: 10.2991/iwmecs-15.2015.110

Google Scholar

[22] L.Y. Shi, Y.M. Wang, A. Ji, L. Gao, Y. Wang, In situ direct bifunctionalization of mesoporous silica SBA-15, J. Mater. Chem., 15 (2005) 1392-1396.

DOI: 10.1039/b418014n

Google Scholar

[23] Y. Xie, B. Yan, C. Tian, Y. Liu, Q. Liu, H. Zeng, Efficient removal of elemental mercury (Hg0) by SBA-15-Ag adsorbents, J. Mater. Chem. A, 2 (2014) 17730-17734.

DOI: 10.1039/c4ta04147j

Google Scholar

[24] D. Aldhayan, A. Aouissi, Gas Phase Oligomerization of Isobutene over Acid Treated Kaolinite Clay Catalyst, Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2017) 119.

DOI: 10.9767/bcrec.12.1.758.119-126

Google Scholar

[25] C.O. Mgbemena, N.O. Ibekwe, R. Sukumar, A.R.R. Menon, Characterization of kaolin intercalates of oleochemicals derived from rubber seed (Hevea brasiliensis) and tea seed (Camelia sinensis) oils, Journal of King Saud University - Science, 25 (2013) 149-155.

DOI: 10.1016/j.jksus.2012.11.004

Google Scholar

[26] M. Glid, I. Sobrados, H. ben rhaiem, J. Sanz, A. Ben Haj Amara, Alkaline activation of metakaolinite-silica mixtures: Role of dissolved silica concentration on the formation of geopolymers, (2017).

DOI: 10.1016/j.ceramint.2017.06.144

Google Scholar

[27] X. Chen, S. Peng, J. Wang, Retention profile and kinetics characteristics of the radionuclide 90-Sr(II) onto kaolinite, J. Radioanal. Nucl. Chem., 303 (2015) 509-519.

DOI: 10.1007/s10967-014-3458-6

Google Scholar

[28] B. A., D. Z., I. A., L. M., A study of the factors controlling the adsorption of Cr(III) on modified montmorillonites, Eur. J. Soil. Sci., 52 (2001) 683-692.

DOI: 10.1046/j.1365-2389.2001.00413.x

Google Scholar

[29] K.L. Konan, C. Peyratout, A. Smith, J.P. Bonnet, S. Rossignol, S. Oyetola, Comparison of surface properties between kaolin and metakaolin in concentrated lime solutions, J. Colloid Interface Sci., 339 (2009) 103-109.

DOI: 10.1016/j.jcis.2009.07.019

Google Scholar

[30] M. Glid, I. Sobrados, H.B. Rhaiem, J. Sanz, A.B.H. Amara, Alkaline activation of metakaolinite-silica mixtures: Role of dissolved silica concentration on the formation of geopolymers, Ceram. Int., 43 (2017) 12641-12650.

DOI: 10.1016/j.ceramint.2017.06.144

Google Scholar

[31] Z. Luo, T. Yu, Z. Ni, S. Lim, H. Hu, J. Shang, L. Liu, Z. Shen, J. Lin, Electronic Structures and Structural Evolution of Hydrogenated Graphene Probed by Raman Spectroscopy, J. Phys. Chem. C, 115 (2011) 1422-1427.

DOI: 10.1021/jp107109h

Google Scholar

[32] D. Yuan, F. Zeng, J. Yan, X. Yuan, X. Huang, W. Zou, A novel route for preparing graphitic ordered mesoporous carbon as electrochemical energy storage material, RSC Adv., 3 (2013) 5570-5576.

DOI: 10.1039/c3ra40677f

Google Scholar

[33] K. Kinoshita, Carbon: electrochemical and physicochemical properties, (1988).

Google Scholar

[34] J.L. Bahr, J.M. Tour, Covalent chemistry of single-wall carbon nanotubes, J. Mater. Chem., 12 (2002) 1952-1958.

DOI: 10.1039/b201013p

Google Scholar

[35] L.H. I., K.J. H., Y.D. J., L.J. E., K.J. M., A.W. S., P. C., J.S. H., C. H., S. D., Rational Synthesis Pathway for Ordered Mesoporous Carbon with Controllable 30‐ to 100‐Angstrom Pores, Adv. Mater., 20 (2008) 757-762.

DOI: 10.1002/adma.200702209

Google Scholar

[36] B. Chao, M.I. Konggidinata, L. Lin, M. Zappi, D.D. Gang, Effect of carbon precursors and pore expanding reagent on ordered mesoporous carbon for resorcinol removal, Journal of Water Process Engineering, 17 (2017) 256-263.

DOI: 10.1016/j.jwpe.2017.05.002

Google Scholar

[37] Z. Lei, D. Bai, X.S. Zhao, Improving the electrocapacitive properties of mesoporous CMK-5 carbon with carbon nanotubes and nitrogen doping, Microporous Mesoporous Mater., 147 (2012) 86-93.

DOI: 10.1016/j.micromeso.2011.06.002

Google Scholar

[38] Q. Lu, Y.-y. Xu, S.-j. Mu, W.-c. Li, The effect of nitrogen and/or boron doping on the electrochemical performance of non-caking coal-derived activated carbons for use as supercapacitor electrodes, New Carbon Materials, 32 (2017) 442-450.

DOI: 10.1016/s1872-5805(17)60133-1

Google Scholar

[39] D. Mattia, M.P. Rossi, B.M. Kim, G. Korneva, H.H. Bau, Y. Gogotsi, Effect of Graphitization on the Wettability and Electrical Conductivity of CVD-Carbon Nanotubes and Films, J. Phys. Chem. B, 110 (2006) 9850-9855.

DOI: 10.1021/jp061138s

Google Scholar

[40] X. Ji, P.S. Herle, Y. Rho, L.F. Nazar, Carbon/MoO2 Composite Based on Porous Semi-Graphitized Nanorod Assemblies from In Situ Reaction of Tri-Block Polymers, Chem. Mater., 19 (2007) 374-383.

DOI: 10.1021/cm060961y

Google Scholar