Robustness in Coupling between Iron and Rare Earth Spins in Rare Earth Orthoferrites

Article Preview

Abstract:

We report on very accurate magnetic measurements on large rare earth orthoferrites single crystals of ErFeO3 and NdFeO3. Our results show that the interaction between rare earth and iron spin system does not change during the spin-flip process. This implies that the coupling between the iron and rare earth spin systems is robust enough to withstand the effects of spin flipping against the magnetic anisotropy energy. This is despite rare eath ions, polarized by the ordered iron ions, being in partly metastable state and their magnetic moment decays with time.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

29-34

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. L. White, Journal of Applied Physics 40, 1061 (1969).

Google Scholar

[2] T. Yamaguchi, Journal of Physics and Chemistry of Solids 35, 479 (1974).

Google Scholar

[3] D. Treves, Physical Review 125, 1843 (1962).

Google Scholar

[4] H. F. Forestier, H and G. Guiot-Guillain, Comptes Rendus 230, 1844 (1950).

Google Scholar

[5] D. Wood, L. Holmes, and J. Remeika, Physical Review 185, 689 (1969).

Google Scholar

[6] W. Koehler, E. Wollan, and M. Wilkinson, Physical Review 118, 58 (1960).

Google Scholar

[7] G. Gorodetsky, R. Hornreich, I. Yaeger, H. Pinto, G. Shachar, and H. Shaked, Physical Review B 8, 3398 (1973).

Google Scholar

[8] G. Gorodetsky, L. M. Levinson, S. Shtrikman, D. Treves, and B. Wanklyn, Physical Review 187, 637 (1969).

Google Scholar

[9] K. P. Belov, A. K. Zvezdin, A. M. Kadomtseva, and R. Levitin, Soviet Physics Uspekhi 19, 574 (1976).

DOI: 10.1070/pu1976v019n07abeh005274

Google Scholar

[10] E. Holzschuh, A. Denison, W. Kündig, P. Meier, and B. Patterson, Physical Review B 27, 5294 (1983).

Google Scholar

[11] V. D. Buchel'nikov, N. Dan'shin, L. Tsymbal, and V. G. Shavrov, Physics-Uspekhi 39, 547 (1996).

Google Scholar

[12] Y. B. Bazaliy, L. Tsymbal, G. Kakazei, A. Izotov, and P. Wigen, PhysIical Review B 69, 104429 (2004).

Google Scholar

[13] L. T. Tsymbal, Y. B. Bazaliy, V. N. Derkachenko, V. I. Kamenev, G. N. Kakazei, F. J. Palomares, and P. E. Wigen, Journal of Applied Physics 101, 123919, 1 (2007).

DOI: 10.1063/1.2749404

Google Scholar

[14] S. Yuan, Y. Wang, M. Shao, F. Chang, B. Kang, Y. Isikawa, and S. Cao, Journal of Applied Physics 109, 07E141 (2011).

Google Scholar

[15] J. De Jong, A. Kimel, R. Pisarev, A. Kirilyuk, and T. Rasing, Physical Review B 84, 104421 (2011).

Google Scholar

[16] B.-G. Park, S. B. Kim, H.-J. Lee, Y. H. Jeong, J.-H. Park, and C.-S. Kim, Journal of Korean Physical Society 53, 758 (2008).

Google Scholar

[17] A. Wu, Z. Wang, B. Wang, X. Ban, L. Jiang, J. Xu, S. Yuan, and S. Cao, Solid State Communications 185, 14 (2014).

Google Scholar

[18] X. Wang, S. Cao, Y. Wang, S. Yuan, B. Kang, A. Wu, and J. Zhang, Journal of Crystal Growth 362, 216 (2013).

Google Scholar

[19] Y. B. Bazaliy, L. Tsymbal, G. Kakazei, and P. Wigen, Journal of Applied Physics 95, 6622 (2004).

Google Scholar

[20] H. Shen, Z. Cheng, F. Hong, J. Xu, S. Yuan, S. Cao, and X. Wang, Applied Physics Letters 103, 192404 (2013).

Google Scholar

[21] G. Song, J. Jiang, B. Kang, J. Zhang, Z. Cheng, G. Ma, and S. Cao, Solid State Communications 211, 47 (2015).

Google Scholar

[22] Y. B. Bazaliy, L. Tsymbal, G. Kakazei, A. Izotov, and P. Wigen, Physical Review B 69, 104429 (2004).

Google Scholar