On Heat Transfer of a Two-Step Radiating Slab of Variable Thermal Conductivity

Article Preview

Abstract:

An investigation of heat transfers in a combustible stockpile whose materials are of variable thermal conductivity is conducted in this article. The stockpile is modeled in rectangular slap and a two-step exothermic chemical reaction responsible for the combustion process is assumed. The reactive slab is also assumed to lose heat to the ambient by radiation. The Runge-Kutta Fehlberg (RKF45) method coupled with the Shooting technique is applied to tackle numerically the nonlinear ordinary differential equation (ODE) governing the problem. The process of heat transfer during combustion is made easy to understand by investigating effects of selected thermo-physical parameters on the system’s temperature. The results show that some thermo-physical parameters accelerate the exothermic chemical reaction and therefore raise the temperature levels, and that others help to reduce heat release rate to lower the temperature profiles. The graphs for the results are plotted and discussed accordingly.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

137-141

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. D. Makinde, M. S. Tshehla, Analysis of thermal stability in a convecting and radiating twostep reactive slab, Adv. Mech. Eng. (2013) 1-9.

DOI: 10.1155/2013/294961

Google Scholar

[2] R. S. Lebelo, R. K. Mahlobo, K. C. Moloi, Thermal stability analysis in a two-step reactive cylindrical stockpile, AJAS 15(2) (2018) 124-131.

DOI: 10.3844/ajassp.2018.124.131

Google Scholar

[3] R. S. Lebelo, K. C. Moloi, K. O. Okosun, M. Mukamuri, S. O. Adesanya, M. S. Muthuvalu, Two-step low-temperature oxidation for thermal stability analysis of a combustible sphere, AEJ 57 (2018) 2829-2835.

DOI: 10.1016/j.aej.2018.01.006

Google Scholar

[4] R. S. Lebelo, O. D. Makinde, T. Chinyoka, Thermal decomposition analysis in a sphere of combustible materials, Adv. Mech. Eng. 9(2) (2017) 1-14.

DOI: 10.1177/1687814017692515

Google Scholar

[5] R. S. Lebelo, Thermal stability investigation in a reactive sphere of combustible material, Adv. Math. Phys. (2016) 1-9.

Google Scholar

[6] E. R. Monazam, L. J. Shadle, A. Shamsi, Spontaneous combustion of char stockpiles, Energy & Fuels, 12 (1998) 1305-1312.

DOI: 10.1021/ef980094m

Google Scholar

[7] D. A. Frank-Kamenetskii, Diffusion and heat transfer in chemical kinetics, Plenum Press, New York, (1969).

Google Scholar

[8] O. D. Makinde, T. Chinyoka, R. S. Lebelo, Numerical investigation into CO2 emission, O2 depletion and thermal decomposition in a reacting slab, Math. Prob. Eng. (2011) 1-19.

DOI: 10.1155/2011/208426

Google Scholar

[9] G. Nyamadzawo, W. Gwenzi, A. Kanda1, A. Kundhlande, C. Masona C, Understanding the Causes, Socio-economic and Environmental Impacts, and Management of Veld Fires in Tropical Zimbabwe, Fire Sci. Rev. 2(2) (2013) 1-13.

DOI: 10.1186/2193-0414-2-2

Google Scholar

[10] B. H. Hamza, E. S. Massawe, O. D. Makinde, Analysis of transient heating due to exothermic reaction in a stockpile of combustible material, Int. J. Phys. Sci. 6(18) (2011) 4337-4341.

Google Scholar

[11] J. M. Simmie, Detailed chemical kinetic model for the combustion of hydrocarbon fuels, Prog. Energy Combust. Sci. 29 (2003) 599-634.

DOI: 10.1016/s0360-1285(03)00060-1

Google Scholar

[12] M. A. Sadiq, J. H. Merkin, Combustion in a porous material with reactant consumption: the role of the ambient temperature, Math Comput. Model, 20 (1994) 27-46.

DOI: 10.1016/0895-7177(94)90217-8

Google Scholar

[13] S. Liao, J. Su, A. T. Chwang, Series solutions for a nonlinear model of combined convective and radiative cooling of a spherical body, Int. J. Heat. Mass. Tran. 49 (2006) 243-245.

DOI: 10.1016/j.ijheatmasstransfer.2006.01.030

Google Scholar