Digitized Simulation of the Moving Bed

Article Preview

Abstract:

Chromatographic separation is an indispensable and important technology in the manufacturing process of chemical products and biomedicine. It uses the distribution differences of a compound in the stationary phase and mobile phase to achieve the separation of the mixture. It is of great value to study the separation process of substances by simulated moving bed chromatography. By digitally simulating the process of moving bed, we can observe the influence of parameter changes on substance analysis by chromatography, and then find out the law of substance separation, which can provide theoretical basis for scientific research of biopharmaceuticals.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

157-161

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Rajendran, G. Paredes, M. Mazzotti, Simulated moving bed chromatographyfor the separation of enantiomers, J. Chromatogr. A, 1216(4) (2009) 709-738.

DOI: 10.1016/j.chroma.2008.10.075

Google Scholar

[2] M. Schulte, J. Strube, Preparative enantioseparation by simulated moving bedchromatography, J. Chromatogr. A, 906(1–2) (2001) 399-416.

DOI: 10.1016/s0021-9673(00)00956-0

Google Scholar

[3] C. Y. Chin, N. L. Wang, Simulated moving bed equipment designs, Sep. Purif. Rev. 33(2) (2004) 77-155.

Google Scholar

[4] P. M. S. Gomes, Advances in Simulated Moving Bed: New Operating Modes; NewDesign Methodologies; and Product (FlexSMB-LSRE) Development, FEUP, Porto, Portugal, (2009).

Google Scholar

[5] V. M. T. Silva, M. Minceva, A. E. Rodrigues, Novel analytical solution for asimulated moving bed in the presence of mass-transfer resistance, Ind. Eng. Chem. Res. 43(16) (2004) 4494-4502.

DOI: 10.1021/ie030610i

Google Scholar

[6] C. P. Le ao, A. E. Rodrigues, Transient and steady-state models for simulatedmoving bed processes: numerical solutions, Comput. Chem. Eng. 28(9) (2004) 1725-1741.

Google Scholar

[7] K. U. Klatt, F. Hanisch, G. Dünnebier, Model-based control of a simulatedmoving bed chromatographic process for the separation of fructose andglucose, J. Process Control, 12(2) (2002) 203-219.

DOI: 10.1016/s0959-1524(01)00005-1

Google Scholar

[8] G. Dünnebier, I. Weirich, K.-U. Klatt, Computationally efficient dynamicmodelling and simulation of simulated moving bed chromatographicprocesses with linear isotherms, Chem. Eng. Sci. 53(14) (1998) 2537-2546.

DOI: 10.1016/s0009-2509(98)00076-1

Google Scholar

[9] P. Suvarov, A. Kienle, C. Nobre, G. D. Weireld, A. V. Wouwer, Cycle to cycleadaptive control of simulated moving bed chromatographic separationprocesses, J. Process Control, 24(2) (2014) 357-367.

DOI: 10.1016/j.jprocont.2013.11.001

Google Scholar

[10] C. Grossmann, C. Langel, M. Mazzotti, M. Morbidelli, M. Morari, Multi-rateoptimizing control of simulated moving beds, J. Process Control, 20(4) (2010) 490-505.

DOI: 10.1016/j.jprocont.2009.12.001

Google Scholar

[11] S. Abel, G. Erdem, M. Amanullah, M. Morari, M. Mazzotti, M. Morbidelli, Optimizing control of simulated moving beds – experimentalimplementation, J. Chromatogr. A, 1092(1) (2005) 2-16.

DOI: 10.1016/j.chroma.2005.04.101

Google Scholar

[12] M. T. Liang, R. C. Liang, L. R. Huang, K. Y. Liang, Y. L. Chien, J. Y. Liao, Supercritical fluids as the desorbent for simulated moving bed – Application to the concentration of triterpenoids from Taiwanofugus camphorate, J. Taiwan Institute Chem. Engineers, 45(4) (2014) 1225-1232.

DOI: 10.1016/j.jtice.2013.10.013

Google Scholar

[13] M. T. Liang, R. C. Liang, L. R. Huang, P. H. Hsu, Y. H. Wu, H. E. Yen, Separation of sesamin and sesamolin by a supercritical fluid-simulated moving bed, American J. Analytic. Chem. 3(12) (2012) 931-938.

DOI: 10.4236/ajac.2012.312a123

Google Scholar

[14] M. T. Liang, R. C. Liang, L. Y. Wang, H. E. Yen, K. T. Lee, Effect of temperaturevariation on the separation of sesamin and sesamolin by simulated moving bed, J. Chem. Chem. Eng. 5 (2011) 479-486.

Google Scholar