Dense ZrB2-MoSi2 Composite Coating Fabricated by a New Multi-Chamber Detonation Accelerator on Carbon/Carbon Composites

Article Preview

Abstract:

A new multi-chamber detonation accelerator (MCDS) was applied to fabricate ZrB2–MoSi2 composite coating containing 20 mol.% of MoSi2 on carbon/carbon composites. Phase composition and microstructure of the coating were characterized by X-ray diffraction and scanning electron microscopy. The ZrB2–20MoSi2 coating displayed compact and lamellar microstructure with porosity lower than 1%, where SiO2 phase was uniformly distributed in the ZrO2 matrix. The coating was well-adhered with carbon/carbon composites. Silica, m-ZrO2, and small amount of Zr(MoO4)2 were formed.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] G. Devi, K. Rao, Carbon-carbon composites - An overview, Def. Sci. J. 43(4) (1993) 369-383.

Google Scholar

[2] H. Wei, L. Min, D. Chunming, L. Xuezhang, Z. Dechang, Z. Kesong, Ablation resistance of APS sprayed mullite/ZrB2-MoSi2 coating for carbon/carbon composites, Rare Metal Mat. Eng. 47(4) (2018) 1043-1048.

DOI: 10.1016/s1875-5372(18)30117-6

Google Scholar

[3] J. E. Sheehan, K. W. Buesking, B. J. Sullivan, Carbon-Carbon Composites, Annu. Rev. Mater. Sci. 24 (2003) 19-44.

DOI: 10.1146/annurev.ms.24.080194.000315

Google Scholar

[4] W. Krenkel, F. Berndt, C/C–SiC composites for space applications and advanced friction systems, Mat. Sci. Eng. A. 412 (2005) 177-181.

DOI: 10.1016/j.msea.2005.08.204

Google Scholar

[5] W.Z. Zhang, Z. Yi, G. Lemuel, X. Xiang, H. Bai-yun, Preparation and oxidation property of ZrB2-MoSi2/SiC coating on carbon/carbon composites, Trans. Nonferrous Met. Soc. China. 21 (2011) 1538-1544.

DOI: 10.1016/s1003-6326(11)60893-5

Google Scholar

[6] Y. Zhi-qiao, X. Xiang, X. Pen, C. Feng, Z. Hong-bo, H. Bai-yun. Oxidation behavior of Mo-Si coated C/SiC composites, Aerosp. Mater. Technol. 10(6) (2007) 39-43.

Google Scholar

[7] H. Jian-feng, Z. Xie-rong, L. He-jun, Influence of the preparation temperature on the phase, microstructure and anti-oxidation property of a SiC coating for C/C composites, Carbon, 42(9) (2004) 1517-1521.

DOI: 10.1016/j.carbon.2004.01.066

Google Scholar

[8] X. Liu, W. Han, K. Wen, C. Deng, M. Liu, K. Zhou, Bimodal microstructure ZrB2-MoSi2 coating prepared by atmospheric plasma spraying for carbon/carbon composites against long-term ablation, Ceram. Int. 43 (2017) 16659-16667.

DOI: 10.1016/j.ceramint.2017.09.056

Google Scholar

[9] Y. Zhang, Z. Hu, H. Li, J. Ren, Ablation resistance of ZrB2–SiC coating prepared by supersonic atmosphere plasma spraying for SiC-coated carbon/carbon composites, Ceram. Int. 40(9) (2014) 14749-14755.

DOI: 10.1016/j.ceramint.2014.06.064

Google Scholar

[10] Z. Hui-chao, L. Fu-hai, W. Feng, Study on properties of ZrSiO4 ceramic coatings by plasma spray, Journal of Guangdong Non-ferrous Metals. 15(1) (2005) 30-32 (in Chinese).

Google Scholar

[11] C. Li, G. Li, H. Ouyang, J. Lu, ZrB2 particles reinforced glass coating for oxidation protection of carbon/carbon composites, J. Adv. Ceram. 8(1) (2019) 102-111.

DOI: 10.1007/s40145-018-0298-9

Google Scholar

[12] B. Xu, R. He, C. Hong, Y. Ma, W. Wen, H. Li, T. Cheng, D. Fang, Y. Yang, Ablation behavior and mechanism of double-layer ZrB2-based ceramic coating for lightweight carbon-bonded carbon fiber composites under oxyacetylene flame at elevate temperature, J. Alloys Compd. 702 (2017) 551-560.

DOI: 10.1016/j.jallcom.2017.01.242

Google Scholar

[13] A. Purwar, B. Basu, Thermo-structural design of ZrB2–SiC based thermal protection system for hypersonic space vehicles, J. Am. Ceram. Soc. 100 (2017) 1618-1633.

DOI: 10.1111/jace.14750

Google Scholar

[14] Z. Wang, S. Wang, X. Zhang, P. Hu, W. Han, C. Hong, Effect of graphite flake on microstructure as well as mechanical properties and thermal shock resistance of ZrB2–SiC matrix ultrahigh temperature ceramics, J. Alloys Compd. 484 (2009) 390-394.

DOI: 10.1016/j.jallcom.2009.04.109

Google Scholar

[15] X. Yang, L. Wei, W. Song, Z. Bi-feng, C. Zhao-hui, ZrB2/SiC as a protective coating for C/SiC composites: Effect of high temperature oxidation on mechanical properties and anti-ablation property, Compos. Part B-Eng. 45 (2013) 1391-1396.

DOI: 10.1016/j.compositesb.2012.07.007

Google Scholar

[16] F. Monteverde, A. Bellosi, Oxidation of ZrB2-based ceramics in dry air, J. Electrochem. Soc. 150 (2003) B552-B559.

DOI: 10.1149/1.1618226

Google Scholar

[17] Y. Niu, H. Wang, H. Li, X. Zhenga, C. Ding, Dense ZrB2–MoSi2 composite coating fabricated by low pressure plasma spray (LPPS), Ceram. Int. 39 (2013) 9773-9777.

DOI: 10.1016/j.ceramint.2013.05.038

Google Scholar

[18] X. Yang, C. Feng, W. Qing, ZrB2-SiC as a protective coating for C/SiC composites: Effect of high temperature oxidation on thermal shock property and protection mechanism, J. Asian Ceram. 4(2) (2016) 159-163.

DOI: 10.1016/j.jascer.2016.02.001

Google Scholar

[19] G. Li, X. Xiong, Ke Huang, Ablation mechanism of TaC coating fabricated by chemical vapor deposition on carbon-carbon composites, Trans. Nonferrous Met. Soc. China. 19 (2009) 689-695.

DOI: 10.1016/s1003-6326(10)60133-1

Google Scholar

[20] N. Vasilik, Yu. Tyurin, O. Kolisnichenko, 2012, Method for gas-dynamic detonating speedup of powders and device for its implementation. RU Patent 2506341.

Google Scholar

[21] M. Kovaleva, Y. Tyurin, N. Vasilik, O. Kolisnichenko, M. Prozorova, M. Arseenko, E. Danshina, Deposition and characterization of Al2O3 coatings by multi-chamber gas-dynamic accelerator, Surf. Coat. Technol. 232 (2013) 719-725.

DOI: 10.1016/j.surfcoat.2013.06.086

Google Scholar

[22] M. Kovaleva, M. Prozorova, M. Arseenko, Y. Tyurin, O. Kolisnichenko, M. Yapryntsev, V. Novikov, O. Vagina, V. Sirota, Zircon-based ceramic coatings formed by a new multi-chamber gas-dynamic accelerator, Coatings. 7(9) (2017) 142.

DOI: 10.3390/coatings7090142

Google Scholar