Preparation and Structural Stability of LiFePO4|Ga-LLZO Composite Cathode Material Heat-Treated at Intermediate Temperatures

Article Preview

Abstract:

In this study, cathode and lithium-ion conducting solid electrolyte composite pellet with 1:1 wt. % composition of LiFePO4 and Li7-3XGaxLa3Zr2O12 (x = 0.1) (LiFePO4|Ga-LLZO) was prepared via solid-state reaction. The aim of the study is to investigate the phase stability between LiFePO4 cathode and Ga-LLZO solid electrolyte material when heat treated at 400 to 600 °C. The as-mixed LiFePO4|Ga-LLZO composite was characterized by TG/DTA and the heat treated sample was then analyzed for its structure using XRD and compared to the just as-mixed composite. XRD patterns of the heat treated composite pellet showed that it retains its as-mixed phases of LiFePO4 and Ga-LLZO when sintered below 500 °C under Ar gas flow environment. However, upon heat treatment at 600 °C, the sample already reacted and decomposed with the formation of other phases.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

70-74

Citation:

Online since:

April 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Honggowiranto. and E. Kartini. Characterization of LiFePO4 Cathode by Addition of Graphene for Lithium Ion Batteries, American Institute of Physics 1710 (2016) 030045.

DOI: 10.1063/1.4941511

Google Scholar

[2] X. Yan, Z. Li, Z. Wen, and W. Han. Li/Li7La3Zr2O12/LiFePO4 All-Solid-State Battery with Ultrathin Nanoscale Solid Electrolyte, The Journal of Physical Chemistry C (2017) 1431-1435.

DOI: 10.1021/acs.jpcc.6b10268

Google Scholar

[3] F. Han, J. Yue, C. Chen, N. Zhao, X. Fan, Z. Ma, T. Gao, F. Wang, X. Guo, and C. Wang. Interphase Engineering Enabled All-Ceramic Lithium Battery, Joule 2 (2018) 497-508.

DOI: 10.1016/j.joule.2018.02.007

Google Scholar

[4] L. Miara, W. Richards, Y. Wang, and G. Ceder. First-principles studies on cation dopants and electrolyte|cathode interphases for lithium garnets, Chem. Mater. 27 (11) (2015) 4040-4047.

DOI: 10.1021/acs.chemmater.5b01023

Google Scholar

[5] R. Jalem, M. Rushton, W. Manalastas, M. Nakayama, T. Kasuga, J. A. Kilner, and R. W. Grimes. Effects of Gallium Doping in Garnet-Type Li7La3Zr2O12 Solid Electrolytes, Chem. Mater. 27 (2015) 2821-2831.

DOI: 10.1021/cm5045122

Google Scholar

[6] C.P. Garrido, R.B. Cervera. Synthesis of Amorphous Fe-doped SiO2 Anode Nanomaterial via Sol-gel Method, Advanced Materials Research Journal, 1119 (2015) 38-42.

DOI: 10.4028/www.scientific.net/amr.1119.38

Google Scholar

[7] Wang, Z., Z. Wang, W. Peng, H. Guo, X. Li, J. Wang, and A. Qi. Structure and electrochemical performance of LiCoO2 cathode material in different voltage ranges, American Institute of Physics (2016).

DOI: 10.1007/s11581-014-1098-z

Google Scholar

[8] F.R.C. Bueta, J.F. Imperial, R.B. Cervera. Structure and conductivity of NiO/YSZ composite prepared via modified glycine-nitrate process at varying sintering temperatures, Ceramics International Journal (Elsevier) 43 (2017) 16174-16177.

DOI: 10.1016/j.ceramint.2017.08.193

Google Scholar

[9] R.M. Garcia. R.B. Cervera. Morphology and Structure of Ni/Zr0.84Sc0.16O1.92 electrode material synthesized via glycine-nitrate combustion method for solid oxide electrochemical cell, Applied Sciences Journal (2019), 9, 264;.

DOI: 10.3390/app9020264

Google Scholar

[10] J. Wakasugi, H. Munakata, and K. Kanamura. Thermal Stability of Various Cathode Materials against Li6.25Al0.25La3Zr2O12 Electrolyte. Electrochemistry, 85(2) (2017) 77-81.

Google Scholar

[11] R.J. Chen, Y.B. Zhang, T. Liu, B.Q. Xu, Y.H. Lin, C.W. Nan, Y. Shen. Addressing the interface issues in all-solid-state bulk-type lithium ion battery via all-composite approach, ACS Applied Materials and Interfaces, 9 (2017) 9654-9661.

DOI: 10.1021/acsami.6b16304

Google Scholar

[12] P. Han, Y. Zhu, J. Liu, An all-solid-state lithium ion battery electrolyte membrane fabricated by hot-pressing method, J. Power Sources, 284 (2015) 459-465.

DOI: 10.1016/j.jpowsour.2015.03.058

Google Scholar

[13] J. Ni, E. Case, J. Sakamoto, Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet, J. Mater Sci 47 (2012) 7978-7985.

DOI: 10.1007/s10853-012-6687-5

Google Scholar

[14] R. Inada, S. Yasuda, H. Hosokawa, M. Saito, T. Tojo, Y. Sakurai, Formation and stability of interface between garnet-type Ta-doped Li7La3Zr2O12 solid electrolyte and lithium metal electrode, 4(26) (2018).

DOI: 10.3390/batteries4020026

Google Scholar

[15] R.L. Gimpaya, R.B. Cervera. Solid-State Synthesis and Characterization of Li7-3xGaxLa3Zr2O12 Solid Electrolyte for Li-ion Battery Application, Key Engineering Materials Journal, 705 (2016) 145-149.

Google Scholar

[16] J. Ha et al. A Chemically Activated Graphene-encapsulated LiFePO4 Composite for High-performance Lithium Ion Batteries. Nanoscale 5 (2013) 8647–8655.

DOI: 10.1039/c3nr02738d

Google Scholar

[17] H. Geng, et al. Formation Mechanism of Garnet-Like Li7La3Zr2O12 Powder Prepared by Solid State Reaction. Rare Met. Mater. Eng. 45, 612–616 (2016).

DOI: 10.1016/s1875-5372(16)30081-9

Google Scholar

[18] R.B. Cervera, S. Miyoshi, Y. Oyama, Y.E. Elammari, T. Yagi, S. Yamaguchi. Perovskite-structured BaScO2(OH) as a novel proton-conductor: Heavily hydrated phase obtained via low-temperature synthesis, Chemistry of Materials Journal, ACS Publications, 25 (2013) 1483-1489.

DOI: 10.1021/cm302983d

Google Scholar