[1]
A.N. Zelikman, G.A. Meerson, Metallurgy of rare metals, Metallurgiya, Moscow, (1991).
Google Scholar
[2]
E. Lassner, W.-D. Schubert, E. Lüderitz, Tungsten, Tungsten Alloys, and Tungsten Compounds. Encyclopedia of Industrial chemistry, H.U. Wolf, (2012).
DOI: 10.1002/14356007.a27_229
Google Scholar
[3]
E.N. Kuz'michev, D.I. Balahonov, Production of functional materials based on tungsten-containing multicomponent mineral raw materials, Computational nanotechnology, 3 (2015) 39-44.
Google Scholar
[4]
V.A. Reznichenko, A.A. Palant, V.I. Soloviev, Complex use of raw materials in the technology of refractory metals, Nauka, Moscow, (1988).
Google Scholar
[5]
A.A. Palant, V.A. Brukvin, A.V. Tovtin, Extraction of tungsten from waste products of processing of wolframite raw materials, Metally, 5 (1999) 23–27.
Google Scholar
[6]
B. Şirin, E. Açma, C. Arslan, O. Addemir, The effect of sulphur on tungsten recovery from scheelite concentrates by alkali fusion, Canadian Metallurgical Quarterly, V. 33, 4 (1994) 313–318.
DOI: 10.1179/cmq.1994.33.4.313
Google Scholar
[7]
F.M. Perel'man, A.N. Zvorykin, Molybdenum and tungsten, Nauka, Moscow, (1968).
Google Scholar
[8]
J.F. Paulino, J.C. Afonso, J.L. Mantovano, C.A. Vianna, J.W. Silva Dias Da Cunha Recovery of tungsten by liquid-liquid extraction from a wolframite concentrate after fusion with sodium, Hydrometallurgy, 127–128 (2012) 121–124.
DOI: 10.1016/j.hydromet.2012.07.018
Google Scholar
[9]
K.V. Pikulin, E.N. Selivanov, L.I. Galkova, R.I. Gulyaeva, Features of the tungsten extraction from spent petroleum catalysts, Cvetnye metally, 11 (2017) 31–36.
Google Scholar
[10]
G.K. Shurdumov, Z.A. Cherkesov, Synthesis of potassium tungstate in the system K2CO3 – KNO3 – WO3, Zhurnal neorganicheskoy chimii, 54, 1 (2009) 138–141.
DOI: 10.1134/s0036023609010239
Google Scholar
[11]
G.K. Shurdumov, Z.A. Cherkesov, Z.O. Kerefov, Synthesis of sodium tungstate based on the system Na2C2O4 – NaNO3 – WO3, Zhurnal neorganicheskoy chimii, 52, 5 (2007) 739–742.
DOI: 10.1134/s003602360705004x
Google Scholar
[12]
V.L. Butukhanov, E.V. Khromcova, Physical and chemical bases of complex use of tungsten mineral raw materials, Tihookeanskiy gos. Un-t, Khabarovsk, (2015).
Google Scholar
[13]
G.I. Khanturgaeva, Combined technologies for complex processing of refractory molybdenum and tungsten ores, Gorniy informacionno – analiticheskiy bulleten', 14, 12 (2009) 478–494.
Google Scholar
[14]
S. Shiqing, Study on the chemical behavior of solid phase reaction of WO3 and Me2CO3 by the method of thermal analysis, Chemical journal of Chinese universities, 6, № 2 (1985), 151–155.
Google Scholar
[15]
Information on: http://www.icdd.com/index.php/pdf-2/.
Google Scholar
[16]
V.N. Trushin, P.V. Andreev, M.A. Fadeev, X-ray phase analysis of polycrystalline materials, Nizhegorodsky universitet, Nizhny Novgorod, (2012).
Google Scholar
[17]
Information on https://www.netzsch-thermal-analysis.com/ms/products-solutions/software/ netzsch-advanced-software/thermokinetics/.
Google Scholar
[18]
A. Sasaki, Variation of unit cell parameters in wolframite series, Mineralogical Journal, 2, 6 (1959) 375–396.
Google Scholar
[19]
V.I. Posypayko, E.A. Alekseeva, N.A. Vasina, Fusibility Diagrams of Salt Systems, 3rd part, Metallurgiya, Moscow, (1979).
Google Scholar
[20]
A.I. Volkov, I.M. Zharskiy, Large chemical reference, Sovremennaya shkola, Minsk, (2005).
Google Scholar
[21]
S. Vyazovkin, A unified approach to kinetic processing of non-isothermal data, International Journal of Chemical Kinetics. 28 (1996) 95–101.
Google Scholar
[22]
S. Vyazovkin, C.A. Wight, Model-free and model-fitting approaches to kinetic analysis of isothermal and non-isothermal data, Thermochimica Acta. 340–341 (1999) 53–68.
DOI: 10.1016/s0040-6031(99)00253-1
Google Scholar
[23]
M. Brown, D. Dollimore, A.K. Galwei, Reactions in the Solid State. 22 (1980) 339.
Google Scholar