Study of Sulphatizing Roasting Process Using Iron Sulphates for the Treatment of Zinc Leach Residue

Article Preview

Abstract:

The paper presents the results of the investigation of zinc leach residue (ZLR) processing by sulphatizing roasting with iron sulphates FeSO4 and Fe2(SO4)3 followed by water leaching. The elemental and phase compositions of ZLR of JSC "Chelyabinsk Zinc Plant" were studied. Based on the thermodynamic calculations using HSC Chemistry 9.9 software, the temperature ranges of the sulphatizing roasting and the required amounts of iron sulphate additives for the sulphation of zinc and copper were determined. Subsequent experiments showed that recovery rates of zinc and copper reached 99.5% and 89.1% respectively, while iron remained in the leached residue. The results have indicated a high efficiency of sulphatizing roasting to transform zinc and copper contained in ZLR from ferrite to water-soluble sulphate.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

448-455

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Information on http://www.zinc.org.in/why_zinc/production/.

Google Scholar

[2] S. Fugleberg, Finnish expert report on best available techniques in zinc production, Edita Ltd, Helsinki, (1999).

Google Scholar

[3] R. J. Sinclair, The extractive metallurgy of zinc, first ed., The Australasian Institute of Mining and Metallurgy, Carlton Victoria, (2005).

Google Scholar

[4] P. A. Kozlov, The Waelz Process, Ore and metals publishing house, Moscow, (2003).

Google Scholar

[5] E. Vahidi, F. Rashchi, D. Moradkhani, Recovery of zinc from an industrial zinc leach residue by solvent extraction using D2EHPA, Miner. Eng. 22 (2009) 204-206.

DOI: 10.1016/j.mineng.2008.05.002

Google Scholar

[6] M.R.C. Ismael, J.M.R. Carvalho, Iron recovery from sulphate leach liquors in zinc hydrometallurgy, Miner. Eng. 16 (2003) 31-39.

DOI: 10.1016/s0892-6875(02)00310-2

Google Scholar

[7] R. Alizadeh, F. Rashchi, R. Vahidi, Recovery of zinc from leach residues with minimum iron dissolution using oxidative leaching, Waste Manag. Res. 29 (2011) 165-171.

DOI: 10.1177/0734242x10372661

Google Scholar

[8] V.M. Chumarev, E.N. Selivanov, G.P. Kharitidi, G.V. Skopov, Carbon metallothermic smelting of zinc cakes in the electric furnace, in: J. Harre (Ed.), Proceedings - European Metallurgical Conference, EMC 2009, Vol. 3, GDMB, Clausthal-Zellerfeld, (2009) 817-832.

Google Scholar

[9] N. Peng, B. Peng, L.Y. Chai, W. Liu, M. Li, Y. Yuan, H. Yan, D.K. Hou, Decomposition of zinc ferrite in zinc leaching residue by reduction roasting, Procedia Environ. Sci. 16 (2012) 705-714.

DOI: 10.1016/j.proenv.2012.10.097

Google Scholar

[10] M. Li, B. Peng, L.Y. Chai, N. Peng, H. Yan, D.K. Hou Recovery of iron from zinc leaching residue by selective reduction roasting with carbon, J. Hazard. Mater. 237-238 (2012) 323-330.

DOI: 10.1016/j.jhazmat.2012.08.052

Google Scholar

[11] N. Peng, B. Peng, L.Y. Chai, M. Li, J.M. Wang, H. Yan, Y. Yuan, Recovery of iron from zinc calcines by reduction roasting and magnetic separation, Miner. Eng. 35 (2012) 57-60.

DOI: 10.1016/j.mineng.2012.05.014

Google Scholar

[12] Y.X. Zheng, J.F. Lu, W. Liu, W.Q. Qin, S.M. Wen, An innovative technology for recovery of zinc, lead and silver from zinc leaching residue, Physicochem. Probl. Mi. 52 (2016) 943-954.

Google Scholar

[13] P.C. Holloway, T.H. Etsell, A.L. Murland, Roasting of La Oroya Zinc Ferrite with Na2CO3, Metall. Mater. Trans. B 38B (2007) 781-791.

DOI: 10.1007/s11663-007-9082-x

Google Scholar

[14] P.C. Holloway, T.H. Etsell, A.L. Murland, Use of Secondary Additives to Control the Dissolution of Iron during Na2CO3 Roasting of La Oroya Zinc Ferrite, Metall. Mater. Trans. B 38B (2007) 793-808.

DOI: 10.1007/s11663-007-9083-9

Google Scholar

[15] P.C. Holloway, T.H. Etsell Recovery of zinc, gallium and indium from La Oroya zinc ferrite using Na2CO3 roasting, Trans. Inst. Min Metall. C 117 (2008) 137-146.

DOI: 10.1179/174328508x283478

Google Scholar

[16] Y.L. Zhang, X.J. Yu, X.B. Li, Zinc recovery from franklinite by sulphation roasting, Hydrometallurgy 109 (2011) 211-214.

DOI: 10.1016/j.hydromet.2011.07.002

Google Scholar

[17] V.M. Alkatseva, Printsipial'naya skhema pererabotki tsinkovykh kekov [The principal diagram of zinc cakes processing], Izv. vuzov. Tsvet. metallurgiya 3 (2014) 28-32.

Google Scholar

[18] E. Güler, A. Seyrankaya, I. Cöcen, Hydrometallurgical Evaluation of Zinc Leach Plant Residue, Asian J. Chem. 23 (2011) 2879-2888.

Google Scholar

[19] M.D. Turan, H.S. Altundoğan, F. Tümen, Recovery of zinc and lead from zinc plant residue, Hydrometallurgy 75 (2004) 169-176.

DOI: 10.1016/j.hydromet.2004.07.008

Google Scholar

[20] G.M. Jiang, B. Peng, Y.J. Liang, L.Y. Chai, Q.W. Wang, Q.Z. Li, M. Hu, Recovery of valuable metals from zinc leaching residue by sulfate roasting and water leaching, Trans. Nonferrous Met. Soc. China 27 (2017) 1180-1187.

DOI: 10.1016/s1003-6326(17)60138-9

Google Scholar

[21] M. Hu, B. Peng, L.Y. Chai, Y.C. Li, N. Peng, Y.Z. Yuan, D. Chen High-Zinc Recovery from Residues by Sulfate Roasting and Water Leaching, JOM 67 (2015) 2005-2012.

DOI: 10.1007/s11837-015-1483-8

Google Scholar

[22] N.A. Filippova Fazoviy analiz rud I produktov ih pererabotki [Phase analysis of ores and products of their processing], Khimiya, Moscow, (1975).

Google Scholar

[23] Information on http://www.outotec.com/globalassets/products/digital-solutions/hsc/13-Equilibrium-Module.pdf.

Google Scholar