Synthesis of Nanoporous Material from Lignin via Carbonization Assisted Acid Activation

Article Preview

Abstract:

Waste lignin (WL) from the pulp mill and paper was studied for its potential application to prepare the nanoporous carbon with high porosity via carbonization assisted acid activation. The effect of acid activation such as HNO3, HCl, H2SO4, and H3PO4 on lignin transformation to nanoporous carbon investigated. The physicochemical properties of nanoporous carbon were comprehensively characterized through N2 sorption, Scanning electron microscope (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR), respectively. N2 sorption revealed that the condition using 5% vol of phosphoric acid activation at carbonization temperature of 700°C for 2 h exhibited the highly porous structure of carbon nanoparticles with a total pore volume of 0.035 cm3/g. With the properly selecting process variables of waste lignin development could be producing high porosity nanoporous carbon.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

149-154

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Venkata Mohan, J. Karthikeyan, Removal of lignin and tannin colour from aqueous solution by adsorption onto activated charcoal. Environ. Pollut. 97 (1997), pp.183-187.

DOI: 10.1016/s0269-7491(97)00025-0

Google Scholar

[2] Z. Qinglin, C. Karl T., Adsorption of organic pollutants from effluents of a Kraft pulp mill on activated carbon and polymer resin. Adv. Environ. Res. 3 (2001), pp.251-258.

DOI: 10.1016/s1093-0191(00)00059-9

Google Scholar

[3] M. Dinesh, P. Charles U. Jr., and S. Philip H., Single, binary and multicomponent adsorption of copper and cadmium from aqueous solutions on Kraft lignin—A biosorbent. J. Colloid Interf. Sci. 297(2) (2006), pp.489-504.

DOI: 10.1016/j.jcis.2005.11.023

Google Scholar

[4] J. Lora, Industrial commercial lignins: Sources, properties and applications. in Monomers, Polymers and Composites from Renewable Resources, edited by Belgacem, M., and Gandini, A. (eds.), Elsevier, Oxford, UK (2008), p.225 – 241.

DOI: 10.1016/b978-0-08-045316-3.00010-7

Google Scholar

[5] R. Aravamuthan, W.Y. Chen, K. Zargarian, and G. C. April, Ethanol from southern hardwoods: the role of presulphonation in the acid hydrolysis process. Biotechnology and Bioengineering Symposium, John Wiley & Sons (1986), p.115 – 127.

DOI: 10.1080/00986448808940608

Google Scholar

[6] R.J.A. Gosselink, E. de Jong, B. Guran, and A. Abächerli, Coordination network for lignin-standardisation. production and applications adapted to market requirements (EUROLIGNIN). Ind. Crops Prod. 20 (2004), pp.121-129.

DOI: 10.1016/j.indcrop.2004.04.015

Google Scholar

[7] A.L. Macfarlane, R. Prestidge, M.M. Farid, and J.J.J. Chen, Dissolved air flotation: A novel approach to recovery of organosolv lignin. Chemical Engineering Journal 148(1) (2009), pp.15-19.

DOI: 10.1016/j.cej.2008.07.036

Google Scholar

[8] B. Krzysztof, J. Krzysztof, KOH activated lignin-based nanostructured carbon exhibiting high hydrogen electrosorption. Carbon 46 (2008), p.1948 - (1956).

DOI: 10.1016/j.carbon.2008.08.005

Google Scholar

[9] B. Krzysztof, J. Dawid, J. Krzysztof, Electrochemical hydrogen storage in activated carbons with different pore structures derived from certain lignocellulose materials. Carbon 50 (2012), pp.5017-5026.

DOI: 10.1016/j.carbon.2012.06.030

Google Scholar

[10] T. Nagy L., H. Ming, I. Shinsuke, S. Hiroaki, B. Alexis A., I. Masataka, A. Katsuhiko, S. Yoshio, and Y. Yusuke, Direct synthesis of MOF-derived nanoporous carbon with magnetic Co nanoparticles toward efficient water treatment. Small 10 (2014), pp.2096-2107.

DOI: 10.1002/smll.201302910

Google Scholar

[11] C. Binling, M. Guiping, K. Dali, Z. Yanqiu, and X. Yongde, Atomically homogeneous dispersed ZnO/N-doped nanoporous carbon composites with enhanced CO2 uptake capacities and high efficient organic pollutants removal from water. Carbon 95 (2015), pp.113-124.

DOI: 10.1016/j.carbon.2015.08.015

Google Scholar

[12] P. Maryam, Q. Ali, R. Ramakrishnan, and F. Henry C., On the effects of confinement within a catalyst consisting of platinum embedded within nanoporous carbon for the hydrogenation of alkenes. Carbon 66 (2014), pp.459-466.

DOI: 10.1016/j.carbon.2013.09.022

Google Scholar

[13] Suhas, P.J.M. Carrott, and M.M.L. Ribeiro Carrott, Lignin - from natural adsorbent to activated carbon: A review. Bioresource Technology 98 (2007), pp.2301-2312.

DOI: 10.1016/j.biortech.2006.08.008

Google Scholar

[14] M. Ana and C. Ana P., Nanoporous Carbon Synthesis: An Old Story with Exciting New Chapters,, Porosity - Process, Technologies and Applications (2018), pp.37-68.

DOI: 10.5772/intechopen.72476

Google Scholar

[15] A. Zeid A., A Review: Fundamental Aspects of Silicate Mesoporous Materials,, Materials 2012, 5, pp.2874-2902.

Google Scholar

[16] A. Mays, H. D. Doan, and C. Chil-Hung, A Review on Breathing Behaviors of Metal-Organic-Frameworks (MOFs) for Gas Adsorption,, Materials 2014, 7, pp.3198-3250.

DOI: 10.3390/ma7043198

Google Scholar

[17] I. Korbag, S.M. Saleh, Extraction of Lignin from Paper Industry Waste. International Journal of Applied Engineering Research 9(23) (2014), p.19421 – 19428.

Google Scholar

[18] K.K. Pandey, A.J. Pitman, FTIR Studies of the Changes in Wood Chemistry Following Decay by Brown-rot and White-rot Fungi. International Biodeterioration & Biodegradation 52 (2003), pp.151-160.

DOI: 10.1016/s0964-8305(03)00052-0

Google Scholar