The Production of Biodiesel from Waste Cooking Oil (Simultaneous Esterification and Transesterification Using Fe/Zeolite Catalysts from Waste Geothermal)

Article Preview

Abstract:

The main aim of this research is to produce biodiesel with simultaneous esterification and transesterification using Fe/Zeolite catalyst. Fe/Zeolite catalyst synthesized using hydrothermal process from waste geothermal of PT. Geodipa Energy. This catalyst analyzed using XRD, SEM, and BET test. The variables of this research are concentration (0,01 gr/gr, 0,015 gr/gr, 0,02 gr/gr, 0,025 gr/gr, 0,03 gr/gr) and temperature (50°C, 55°C, 60°C, 65°C, 70°C). The result of biodiesel characterization using simultaneous esterification and transesterification is positive to increase yield following concentration of catalyst and temperature of the reaction. This biodiesel has been in accordance with Indonesian National Standard 7182-2015.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

161-167

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. R. Avhad and J. M. Marchetti, A review on recent advancement in catalytic materials for biodiesel production,, Renewable and Sustainable Energy Reviews, vol. 50, p.696–718, (2015).

DOI: 10.1016/j.rser.2015.05.038

Google Scholar

[2] S. H. Y. S. Abdullah, N. H. M. Hanapi, A. Azid, R. Umar, H. Juahir, H. Khatoon and A. Endut, A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production,, Renewable and Sustainable Energy Reviews, vol. 70, pp.1040-1051, (2017).

DOI: 10.1016/j.rser.2016.12.008

Google Scholar

[3] A. S. Chouhan and A. K. Sarma, Modern heterogeneous catalysts for biodiesel production: A comprehensive review,, Renewable and Sustainable Energy Reviews, vol. 15, p.4378–4399, (2011).

DOI: 10.1016/j.rser.2011.07.112

Google Scholar

[4] E. Viola, A. Blasi, V. Valerio, I. Guidi, F. Zimbardi, G. Braccio and G. Giordano, Biodiesel from fried vegetable oils via transesterification by heterogeneous,, Catalysis Today, vol. 179, p.185–190, (2012).

DOI: 10.1016/j.cattod.2011.08.050

Google Scholar

[5] L. M. Correia , R. M. A. Saboya, N. d. S. Campelo, J. A. Cecilia, E. Rodríguez-Castellón , C. L. Cavalcante Jr. and R. S. Vieira, Characterization of calcium oxide catalysts from natural sources and their application in the transesterification of sunflower oil,, Bioresource Technology, vol. 151, p.207–213, (2014).

DOI: 10.1016/j.biortech.2013.10.046

Google Scholar

[6] H. Jeon, D. J. Kim, S. J. Kim and J. H. Kim, Synthesis of mesoporous MgO catalyst templated by a PDMS–PEO comb-like copolymer for biodiesel production,, Fuel Processing Technology, vol. 116, p.325–331, (2013).

DOI: 10.1016/j.fuproc.2013.07.013

Google Scholar

[7] E. Rashtizadeh, F. Farzaneh and Z. Talebpour, Synthesis and characterization of Sr3Al2O6 nanocomposite as catalyst for biodiesel production,, Bioresource Technology, vol. 154, pp.32-37, (2014).

DOI: 10.1016/j.biortech.2013.12.014

Google Scholar

[8] H. Kazemian, B. Turowec, M. N. Siddiquee and S. Rohani, Biodiesel production using cesium modified mesoporous ordered silica as heterogeneous base catalyst,, Fuel, vol. 103, pp.719-724, (2013).

DOI: 10.1016/j.fuel.2012.07.058

Google Scholar

[9] F. H. Alhassan, R. Yunus, U. Rashid, K. Sirat, A. Islam, H. V. Lee and Y. H. Taufiq-Yap, Production of biodiesel from mixed waste vegetable oils using Ferric hydrogen sulphate as an effective reusable heterogeneous solid acid catalyst,, Applied Catalysis A: General, vol. 456, p.182–187, (2013).

DOI: 10.1016/j.apcata.2013.02.019

Google Scholar

[10] T.-L. Kwong and K.-F. Yung, One-step production of biodiesel through simultaneous esterification and transesterification from highly acidic unrefined feedstock over efficient and recyclable ZnO nanostar catalyst,, Renewable Energy, vol. 90, pp.450-457, (2016).

DOI: 10.1016/j.renene.2016.01.028

Google Scholar

[11] N. Kaur and A. Ali, Lithium zirconate as solid catalyst for simultaneous esterification and transesterification of low quality triglycerides,, Applied Catalysis A: General, vol. 489, p.193–202, (2015).

DOI: 10.1016/j.apcata.2014.10.013

Google Scholar

[12] D. Rattanaphra, A. P. Harvey, A. Thanapimmetha and P. Srinophakun, Simultaneous transesterification and esterification for biodiesel production with and without a sulphated zirconia catalyst,, Fuel, vol. 97, p.467–475, (2012).

DOI: 10.1016/j.fuel.2012.01.031

Google Scholar

[13] M. M. Hasan and M. M. Rahman, Performance and emission characteristics of biodiesel–diesel blend andenvironmental and economic impacts of biodiesel production: A review,, Renewable and Sustainable Energy Reviews, vol. 74, pp.938-948, (2017).

DOI: 10.1016/j.rser.2017.03.045

Google Scholar

[14] N. Al-Jammal, Z. Al-Hamamre and M. Alnaief , Manufacturing of zeolite based catalyst from zeolite tuft for biodiesel production from waste sunflower oil,, Renewable Energy, vol. 93, p. 449e459, (2016).

DOI: 10.1016/j.renene.2016.03.018

Google Scholar

[15] H. Wu, J. Zhang , Q. Wei, J. Zheng and J. Zhang, Transesterification of soybean oil to biodiesel using zeolite supported CaO as strong base catalysts,, Fuel Processing Technology, vol. 109, pp.13-18, (2013).

DOI: 10.1016/j.fuproc.2012.09.032

Google Scholar

[16] C. Giuseppe and G. Alessandro, Dehydration dynamics of Analcime by In situ Synchrotron Powder Diffraction,, American Mineralogist, vol. 84, pp.112-119, (1999).

DOI: 10.2138/am-1999-1-212

Google Scholar

[17] S. Dur., Zeolite Processing as Heavy Material,, Jurnal Sains Matematika dan Terapan, vol. 1, pp.33-45, (2017).

DOI: 10.30829/zero.v1i1.1457

Google Scholar