[1]
M. R. Avhad and J. M. Marchetti, A review on recent advancement in catalytic materials for biodiesel production,, Renewable and Sustainable Energy Reviews, vol. 50, p.696–718, (2015).
DOI: 10.1016/j.rser.2015.05.038
Google Scholar
[2]
S. H. Y. S. Abdullah, N. H. M. Hanapi, A. Azid, R. Umar, H. Juahir, H. Khatoon and A. Endut, A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production,, Renewable and Sustainable Energy Reviews, vol. 70, pp.1040-1051, (2017).
DOI: 10.1016/j.rser.2016.12.008
Google Scholar
[3]
A. S. Chouhan and A. K. Sarma, Modern heterogeneous catalysts for biodiesel production: A comprehensive review,, Renewable and Sustainable Energy Reviews, vol. 15, p.4378–4399, (2011).
DOI: 10.1016/j.rser.2011.07.112
Google Scholar
[4]
E. Viola, A. Blasi, V. Valerio, I. Guidi, F. Zimbardi, G. Braccio and G. Giordano, Biodiesel from fried vegetable oils via transesterification by heterogeneous,, Catalysis Today, vol. 179, p.185–190, (2012).
DOI: 10.1016/j.cattod.2011.08.050
Google Scholar
[5]
L. M. Correia , R. M. A. Saboya, N. d. S. Campelo, J. A. Cecilia, E. Rodríguez-Castellón , C. L. Cavalcante Jr. and R. S. Vieira, Characterization of calcium oxide catalysts from natural sources and their application in the transesterification of sunflower oil,, Bioresource Technology, vol. 151, p.207–213, (2014).
DOI: 10.1016/j.biortech.2013.10.046
Google Scholar
[6]
H. Jeon, D. J. Kim, S. J. Kim and J. H. Kim, Synthesis of mesoporous MgO catalyst templated by a PDMS–PEO comb-like copolymer for biodiesel production,, Fuel Processing Technology, vol. 116, p.325–331, (2013).
DOI: 10.1016/j.fuproc.2013.07.013
Google Scholar
[7]
E. Rashtizadeh, F. Farzaneh and Z. Talebpour, Synthesis and characterization of Sr3Al2O6 nanocomposite as catalyst for biodiesel production,, Bioresource Technology, vol. 154, pp.32-37, (2014).
DOI: 10.1016/j.biortech.2013.12.014
Google Scholar
[8]
H. Kazemian, B. Turowec, M. N. Siddiquee and S. Rohani, Biodiesel production using cesium modified mesoporous ordered silica as heterogeneous base catalyst,, Fuel, vol. 103, pp.719-724, (2013).
DOI: 10.1016/j.fuel.2012.07.058
Google Scholar
[9]
F. H. Alhassan, R. Yunus, U. Rashid, K. Sirat, A. Islam, H. V. Lee and Y. H. Taufiq-Yap, Production of biodiesel from mixed waste vegetable oils using Ferric hydrogen sulphate as an effective reusable heterogeneous solid acid catalyst,, Applied Catalysis A: General, vol. 456, p.182–187, (2013).
DOI: 10.1016/j.apcata.2013.02.019
Google Scholar
[10]
T.-L. Kwong and K.-F. Yung, One-step production of biodiesel through simultaneous esterification and transesterification from highly acidic unrefined feedstock over efficient and recyclable ZnO nanostar catalyst,, Renewable Energy, vol. 90, pp.450-457, (2016).
DOI: 10.1016/j.renene.2016.01.028
Google Scholar
[11]
N. Kaur and A. Ali, Lithium zirconate as solid catalyst for simultaneous esterification and transesterification of low quality triglycerides,, Applied Catalysis A: General, vol. 489, p.193–202, (2015).
DOI: 10.1016/j.apcata.2014.10.013
Google Scholar
[12]
D. Rattanaphra, A. P. Harvey, A. Thanapimmetha and P. Srinophakun, Simultaneous transesterification and esterification for biodiesel production with and without a sulphated zirconia catalyst,, Fuel, vol. 97, p.467–475, (2012).
DOI: 10.1016/j.fuel.2012.01.031
Google Scholar
[13]
M. M. Hasan and M. M. Rahman, Performance and emission characteristics of biodiesel–diesel blend andenvironmental and economic impacts of biodiesel production: A review,, Renewable and Sustainable Energy Reviews, vol. 74, pp.938-948, (2017).
DOI: 10.1016/j.rser.2017.03.045
Google Scholar
[14]
N. Al-Jammal, Z. Al-Hamamre and M. Alnaief , Manufacturing of zeolite based catalyst from zeolite tuft for biodiesel production from waste sunflower oil,, Renewable Energy, vol. 93, p. 449e459, (2016).
DOI: 10.1016/j.renene.2016.03.018
Google Scholar
[15]
H. Wu, J. Zhang , Q. Wei, J. Zheng and J. Zhang, Transesterification of soybean oil to biodiesel using zeolite supported CaO as strong base catalysts,, Fuel Processing Technology, vol. 109, pp.13-18, (2013).
DOI: 10.1016/j.fuproc.2012.09.032
Google Scholar
[16]
C. Giuseppe and G. Alessandro, Dehydration dynamics of Analcime by In situ Synchrotron Powder Diffraction,, American Mineralogist, vol. 84, pp.112-119, (1999).
DOI: 10.2138/am-1999-1-212
Google Scholar
[17]
S. Dur., Zeolite Processing as Heavy Material,, Jurnal Sains Matematika dan Terapan, vol. 1, pp.33-45, (2017).
DOI: 10.30829/zero.v1i1.1457
Google Scholar