Characterizing Interfacial Thermal Conductivity in Graphene Nanocomposites

Article Preview

Abstract:

This study investigated the functionalization and layer number effects on interfacial thermal conductivity (ITC) of graphene nanocomposites through molecular dynamics simulation. The functional groups grafted to the graphene surface were carboxyl and amine groups. The ITC between the graphene and the surrounding epoxy matrix was examined, and the effects of the functional groups and layer number on ITC were characterized through vibrational density of states (VDOS). It was revealed that the VDOS mismatch between the epoxy and the outermost layer of graphene was reduced by the functional groups. Thus, the functional groups can effectively improve the ITC between the graphene and epoxy matrix. Moreover, when the layer number of graphene increases, the ITC in nanocomposites increases correspondingly. This is attributed to the fact that the inner layers of graphene may interact with the epoxy matrix and contribute the interatomistic energy in the interface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

197-203

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika, A.A. Balandin, W. Bao, F. Miao and C.N. Lau: Applied Physics Letters Vol. 92 (2008), p.151911.

DOI: 10.1063/1.2907977

Google Scholar

[2] J.H. Seol, I. Jo, A.L. Moore, L. Lindsay, Z.H. Aitken, M.T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R.S. Ruoff and L. Shi: Science Vol. 328 (2010), pp.213-216.

DOI: 10.1126/science.1184014

Google Scholar

[3] A.A. Balandin: Nat Mater Vol. 10 (2011), pp.569-581.

Google Scholar

[4] S. Colonna, O. Monticelli, J. Gomez, C. Novara, G. Saracco and A. Fina: Polymer Vol. 102 (2016), pp.292-300.

DOI: 10.1016/j.polymer.2016.09.032

Google Scholar

[5] W. Zhao, J. Kong, H. Liu, Q. Zhuang, J. Gu and Z. Guo: Nanoscale Vol. 8 (2016), pp.19984-19993.

Google Scholar

[6] W. Guo and G. Chen: Journal of Applied Polymer Science Vol. 131 (2014), Article ID 40565.

Google Scholar

[7] Q. Li, Y. Guo, W. Li, S. Qiu, C. Zhu, X. Wei, M. Chen, C. Liu, S. Liao, Y. Gong, A.K. Mishra and L. Liu: Chemistry of Materials Vol. 26 (2014), pp.4459-4465.

DOI: 10.1021/cm501473t

Google Scholar

[8] Y. Wang, C. Yang, Q.X. Pei and Y. Zhang: ACS Appl Mater Interfaces Vol. 8 (2016), pp.8272-8279.

Google Scholar

[9] M. Wang, N. Hu, L. Zhou and C. Yan: Carbon Vol. 85 (2015), pp.414-421.

Google Scholar

[10] X. Shen, Z. Wang, Y. Wu, X. Liu and J.-K. Kim: Carbon Vol. 108 (2016), pp.412-422.

Google Scholar

[11] Z. Wei, Z. Ni, K. Bi, M. Chen and Y. Chen: Physics Letters A Vol. 375 (2011), pp.1195-1199.

Google Scholar

[12] X. Shen, Z. Wang, Y. Wu, X. Liu, Y.B. He and J.K. Kim: Nano Lett Vol. 16 (2016), pp.3585-3593.

Google Scholar

[13] Y. Wang, H.F. Zhan, Y. Xiang, C. Yang, C.M. Wang and Y.Y. Zhang: The Journal of Physical Chemistry C Vol. 119 (2015), pp.12731-12738.

Google Scholar

[14] T.-Y. Wang, P.-Y. Tseng and J.-L. Tsai: Journal of Composite Materials Vol. 53 (2018), pp.835-847.

Google Scholar

[15] S. Yu, S. Yang and M. Cho: Journal of Applied Physics Vol. 110 (2011), p.124302.

Google Scholar

[16] S. Plimpton: Journal of Computational Physics Vol. 117 (1995), pp.1-19.

Google Scholar

[17] H. Sun, S. J. Mumby, J. R. Maple, and A. T. Hagler: Journal of the American Chemical Society Vol. 116 (1994), pp.2978-2987.

Google Scholar

[18] R. Rahman and A. Haque: Composites Part B: Engineering Vol. 54 (2013), pp.353-364.

Google Scholar

[19] L.-h. Tam and D. Lau: RSC Adv. Vol. 4 (2014), pp.33074-33081.

Google Scholar

[20] T. Luo and J.R. Lloyd: International Journal of Heat and Mass Transfer Vol. 53 (2010), pp.1-11.

Google Scholar

[21] L.T. Kong: Computer Physics Communications Vol. 182 (2011), pp.2201-2207.

Google Scholar

[22] T.S. English, J.C. Duda, J.L. Smoyer, D.A. Jordan, P.M. Norris and L.V. Zhigilei: Physical Review B Vol. 85 (2012).

Google Scholar

[23] J. Gou, B. Minaie, B. Wang, Z. Liang and C. Zhang: Computational Materials Science Vol. 31 (2004), pp.225-236.

Google Scholar

[24] Y. Sun, L. Chen, L. Cui, Y. Zhang and X. Du: Computational Materials Science Vol. 143 (2018), pp.240-247.

Google Scholar