Improved Thermoelectric Behavior of Super-Growth Carbon Nanotube Using Tetrathiafulvalene-Tetracyanoquinodimethane Nanoparticles

Article Preview

Abstract:

The addition of inorganic materials with high thermoelectric properties is a popular approach to modulate the performance of carbon nanotube (CNT), but, the representative hybridization of CNT and toxic Te or Bi is not practical considering safety. Here, we report a CNT film including charge-transfer complex nanoparticles, which has higher generality and thermoelectric properties. Interestingly, the CNT film containing 30 wt% Tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) nanoparticle exhibited a higher in-plane thermoelectric power factor (44.3 μW m-1 K-2) than the pure CNT (10.1 μW m-1 K-2), which is the first result of a nanostructured charge-transfer complex acting as a carrier promoter.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

209-214

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. J. Snyder, et. al: Nat. Mater. Vol. 7 (2008), p.105.

Google Scholar

[2] N. Toshima: Synth. Met. Vol. 225 (2017), p.3.

Google Scholar

[3] B. T. McGrail, et. al: Angew. Chem. Int. Ed. Vol. 54 (2015), p.1710.

Google Scholar

[4] H. Yan, et. al: Chem. Lett. (1999), p.1217.

Google Scholar

[5] Y. Hiroshige, et. al: Synth. Met. Vol. 157 (2007), p.467.

Google Scholar

[6] N. Toshima, et. al: Adv. Mater. Vol. 27 (2015), p.2246.

Google Scholar

[7] Y. Nonoguchi, et. al: Sci. Rep. Vol. 3 (2013), p.3344.

Google Scholar

[8] J. Ferraris, et. al: J. Am. Chem. Soc. Vol. 95 (1973), p.948.

Google Scholar

[9] K. P. Goetz, et. al: J. Mater. Chem. C Vol. 2 (2014), p.3065.

Google Scholar

[10] D. de Caro, et. al: Langmuir Vol. 29 (2013), p.8983.

Google Scholar

[11] M. Oyama, et. al: Synth. Met. Vol. 230 (2017), p.12.

Google Scholar

[12] S. Gilje, et. al: Nano Lett. Vol. 7 (2007), p.3394.

Google Scholar

[13] Q. Yao, et. al: ACS Nano Vol. 4 (2010), p.2445.

Google Scholar

[14] J. Liu, et. al: Nanoscale Vol. 3 (2011), p.3616.

Google Scholar

[15] D. Kim, et. al: ACS Nano Vol. 4 (2009), p.515.

Google Scholar

[16] C. Yu, et. al: ACS Nano Vol. 5 (2011), p.7885.

Google Scholar

[17] M. Cutler, et. al: Phys. Rev. Vol. 181 (1969), p.1336.

Google Scholar

[18] M. Nakano, et. al: RSC Adv. Vol. 6 (2016), p.2489.

Google Scholar