[1]
L.R.R. da Silva, H.L. Costa, Tribological behavior of gray cast iron textured by maskless electrochemical texturing, Wear 376-377 (2017) 1601–1610.
DOI: 10.1016/j.wear.2017.01.028
Google Scholar
[2]
A.R. Zulhishamuddin, S. N. Aqida, M. Rashidi, A comparative study on wear behaviour of Cr/Mo surface modified grey cast iron, Optics & Laser Technology 104 (2018) 164–169.
DOI: 10.1016/j.optlastec.2018.02.027
Google Scholar
[3]
Y. Li, S. Dong, S., Yan, X. Liu, E. Li, P. He, B. Xu, Elimination of voids by laser remelting during laser cladding Ni based alloy on gray cast iron, Optics & Laser Technology 112 (2019) 30–38.
DOI: 10.1016/j.optlastec.2018.10.055
Google Scholar
[4]
T. Sarkar, P.K. Bose, G. Sutradhar, Mechanical and Tribological Characteristics of Copper Alloyed Austempered Gray Cast Iron (AGI), Materials Today: Proceedings 5 (2018) 3664–3673.
DOI: 10.1016/j.matpr.2017.11.617
Google Scholar
[5]
Y. Zhou, J. Zhang, Z. Xing, H. Wang, Z. Lv, Microstructure and properties of NiCrBSi coating by plasma cladding on gray cast iron Surface and Coatings Technology, 361 (2019) 270-279.
DOI: 10.1016/j.surfcoat.2018.12.055
Google Scholar
[6]
W. Xue, Y. Li, Pretreatments of gray cast iron with different inoculants. Journal of Alloys and Compounds, 689 (2016) 408–415.
DOI: 10.1016/j.jallcom.2016.07.052
Google Scholar
[7]
I. Park, H. Lee, S. Kim Microstructure and cavitation damage characteristics of surface treated gray cast iron by plasma ion nitriding, Applied Surface Science 477 (2019) 147-153.
DOI: 10.1016/j.apsusc.2017.11.112
Google Scholar
[8]
K. Shi, S. Hu, H. Zheng Microstructure and fatigue properties of plasma transferred arc alloying TiC-W-Cr on gray cast iron Surface and Coatings Technology 206(6) (2011) 1211-1217.
DOI: 10.1016/j.surfcoat.2011.08.034
Google Scholar
[9]
R.O. Giacomelli, D.B. Salvaro, C. Binder, A.N. Klein, J.D.B. de Mello, DLC deposited onto nitrided grey and nodular cast iron substrates: An unexpected tribological behavior Tribology International 121 (2018) 460-467.
DOI: 10.1016/j.triboint.2018.02.009
Google Scholar
[10]
D.B. Salvaro, R.O. Giacomelli, R. Binder, C. Binder, A.N. Klein, J.D.B. de Mello Assessment of a multifuncional tribological coating (nitride+DLC) deposited on grey cast iron in a mixed lubrication regime Wear, 376–377(Part A) (2017) 803-812.
DOI: 10.1016/j.wear.2017.01.079
Google Scholar
[11]
Abhinav, N. Krishnamurthy, R. Jain, Corrosion kinetics of Al2O3+ZrO2•5CaO coatings applied on gray cast iron substrate, Ceramics International 43(17) (2017) 15708-15713.
DOI: 10.1016/j.ceramint.2017.08.131
Google Scholar
[12]
J. Yu, B. Song, Y. Liu, Microstructure and wear behaviour of Ni-based alloy coated onto grey cast iron using a multi-step induction cladding process, Results in Physics 10 (2018) 339-345.
DOI: 10.1016/j.rinp.2018.06.042
Google Scholar
[13]
D. Womersley, Thermal spraying and powder spray welding processes for the hard facing of grey cast iron, Materials & Design 11(3) (1990) 153-155.
DOI: 10.1016/0261-3069(90)90005-5
Google Scholar
[14]
Z. Chen, T. Zhou, R. Zhao, H. Zhang, S. Lu, W. Yang, H. Zhou, Improved fatigue wear resistance of gray cast iron by localized laser carburizing, Materials Science and Engineering: A 644, (2015) 1-9.
DOI: 10.1016/j.msea.2015.07.046
Google Scholar
[15]
G.K. Savinovskii, M.A. Chuchuchina, S.F. Kokhov, Normalization of gray cast iron, Metal Science and Heat Treatment 26(2) (1984) 151–152.
DOI: 10.1007/bf00707167
Google Scholar
[16]
M.M. Snitkovskii, Effect of hardening on wear resistance of gray pearlitic cast iron, Metal Science and Heat Treatment of Metals 3(5-6) (1961) 209–210.
DOI: 10.1007/bf00812981
Google Scholar
[17]
P.I. Rusin, High-frequency heating and quenching of ferritic-pearlitic gray cast iron, Metal Science and Heat Treatment 8(4) (1966) 304–305.
DOI: 10.1007/bf00663138
Google Scholar