[1]
L.A. Suleymanova., V.S. Lesovik, Aerated concrete non-autoclave hardening on the composite binders, Belgorod, (2013).
Google Scholar
[2]
L.A. Suleymanova, I.A. Pogorelova, M.V. Marushko, Theoretical basis of formation highly organized porous structure of aerated concrete, Materials Science Forum. 945 MSF (2018) 309-317.
DOI: 10.4028/www.scientific.net/msf.945.309
Google Scholar
[3]
G.C. Hoff, Porosity-strength considerations for cellular concrete, Cement and Concrete Research. 2 (1) (1972) 91-100.
DOI: 10.1016/0008-8846(72)90026-9
Google Scholar
[4]
A. Bouguerra, A. Ledhem, F. De Barquin, R.M. Dheilly, M. Quéneudec, Effect of microstructure on the mechanical and thermal properties of lightweight concrete prepared from clay, cement, and wood aggregates, Cement and Concrete Research. 28 (8) (1998) 1179-1190.
DOI: 10.1016/s0008-8846(98)00075-1
Google Scholar
[5]
L.A. Suleymanova, I.A. Pogorelova, M.V. Marushko Theoretical basis of formation highly organized porous structure of aerated concrete, Materials Science Forum. 945 (2019) 309-317.
DOI: 10.4028/www.scientific.net/msf.945.309
Google Scholar
[6]
A.D. Zimon, N.F. Leshchenko, Colloid chemistry, Agar, Moscow, (2001).
Google Scholar
[7]
V.K. Tikhomirov, Foam, Theory and practice of their production and destruction, Chemistry, Moscow, (1983).
Google Scholar
[8]
P.M. Kruglyakov, D.R. Exerova, Foams and Foams, Chemistry, Moscow, (1990).
Google Scholar
[9]
A.A. Bryushkov, Gas-foam concrete. Gostroyizdat, Moscow, (1930).
Google Scholar
[10]
Yu.P. Gorlov, A.P. Merkin, A.A. Ustenko, Technology of heat-insulating materials, Stroyizdat, Moscow, (1980).
Google Scholar
[11]
K.I. Bakhtiyarov, A.T. Baranov, Influence of the quality of the porous structure and hollow material on the nature of the relationship between strength and elastic modulus. In the book: Production and use of cellular concrete products, Stroyizdat, Moscow, 1968, p.35–43.
Google Scholar
[12]
L.A. Suleymanova, I.A. Pogorelova, K.A. Suleymanov, S.V. Kirilenko, M.V. Marushko, Durability as integral characteristic of concrete, IOP Conference Series: Materials Science and Engineering. 327 (4) (2018) 042127.
DOI: 10.1088/1757-899x/327/4/042127
Google Scholar
[13]
L.A. Suleymanova, V.S. Lesovik, N.P. Lukuttsova, K.R. Kondrashev, K.A. Suleymanov, Energy efficient technologies of production and use non-autoclaved aerated concrete, International Journal of Applied Engineering Research. 10 (5) (2015) 12399-12406.
Google Scholar
[14]
L.A. Suleymanova, V.S. Lesovik, K.A. Kara, M.V. Malyukova, K.A. Suleymanov, Energy-efficient concretes for green construction, Research Journal of Applied Sciences. 9 (12) (2014) 1087-1090.
Google Scholar
[15]
L.A. Suleymanova, K.A. Kara, K.A. Suleymanov, A.V. Pyrvu, D.D. Netsvet, N.P. Lukuttsova, The topology of the dispersed phase in gas concrete, Middle East Journal of Scientific Research. 18 (10) (2013) 1492-1498.
Google Scholar
[16]
D. Hotza, P.O. Guglielmi, W.R.L. Silva, W.L. Repette, Porosity and mechanical strength of an autoclaved clayey cellular concrete, Advances in Civil Engineering. (2010) 194102.
DOI: 10.1155/2010/194102
Google Scholar
[17]
R. Cabrillac, Z. Malou, H. Dumontet, Study of the influence of shape and orientation of the pores on the rigidity of porous materials through a homogenization method, Proceedings of the International Conference on Computer Methods in Composite Materials, CADCOMP. (1998) 553-567.
Google Scholar
[18]
Z. Damene, M.S. Goual, J. Houessou, A. Goullieux, M. Quéneudec, The use of southern Algeria dune sand in cellular lightweight concrete manufacturing: effect of lime and aluminum content on porosity, compressive strength and thermal conductivity of elaborated materials, European Journal of Environmental and Civil Engineering. 22 (10) (2018) 1273-1289.
DOI: 10.1080/19648189.2016.1256233
Google Scholar
[19]
O. Miruk, Development of cellular structure composites for energy efficient construction, Energy Procedia. 128 (2017) 469-476.
DOI: 10.1016/j.egypro.2017.09.032
Google Scholar
[20]
K.A. Bisenov, S.S. Uderbayev, N.A. Saktaganova, Optimization of the structure and process parameters of aerated concrete production with the use of oil sludge, International Journal of Pharmacy and Technology. 8 (3) (2016) 17733-17744.
Google Scholar
[21]
A.E. Sheikin, L.M. Dobshits, A.T. Baranov, Frost Resistance Criteria of Cellular Concretes Hardened in Autoclaves, Beton i Zhelezobeton. 5 (1986) 31-32.
Google Scholar
[22]
S.A. Kolomatskaya, Patterns of binder hydration processes in autoclaved aerated concrete technology, Bulletin of BSTU named after V.G. Shukhov. 5 (2014) 74-78.
Google Scholar
[23]
M.Yu. Elistratkin, M.I. Kozhukhova, Analysis of the factors of increasing the strength of the non-autoclave aerated concrete, Construction Materials and Products. 1, 1 (2018) 59–68.
DOI: 10.34031/2618-7183-2018-1-1-59-68
Google Scholar
[24]
A.E. Sheikin, Yu.V. Chekhovsky, M.I. Brusser, Structure and properties of cement concrete, Moscow, (1979).
Google Scholar
[25]
T.K. Powers, The physical structure of cement paste. Chemistry of Cement, ed. H.F. Taylor Moscow, (1969).
Google Scholar
[26]
Yu.P. Gorlov, A.P. Merkin, A.A. Ustenko, Technology of thermal insulation materials. Moscow, (1980).
Google Scholar