[1]
N. Sasmal, M. Garai, B. Karmakar, Preparation and characterization of novel foamed porous glass-ceramics, Mater. Charact. 103 (2015) 90–100.
DOI: 10.1016/j.matchar.2015.03.007
Google Scholar
[2]
Y. Guo, Y. Zhangn, H. Huangn et al., Novel glass-ceramic foams materials based on red mud, Ceram. Int. 40 (2014) 6677–6683.
Google Scholar
[3]
H.R. Fernandes, D.D. Ferreira, F. Andreola et al., Environmental friendly management of CRT glass by foaming with waste egg shells, calcite or dolomite, Ceram. Int. 40 (2014) 13371–13379.
DOI: 10.1016/j.ceramint.2014.05.053
Google Scholar
[4]
H. Wang, K. Feng, Y. Zhou et al., Effects of Na2B4O7∙5H2O on the properties of foam glass from waste glass and titania-bearing blast furnace slag, Mater. Lett. 132 (2014) 176–178.
DOI: 10.1016/j.matlet.2014.06.018
Google Scholar
[5]
B. Chen, K. Wang, X. Chen, A. Lu, Study of Foam Glass with High Content of Fly Ash Using Calcium Carbonate as Foaming Agent, Mater. Lett. 79 (2012) 263–265.
DOI: 10.1016/j.matlet.2012.04.052
Google Scholar
[6]
F. Méar, P. Yot, M. Ribes, Effects of temperature, reaction time and reducing agent content on the synthesis of macroporous foam glasses from waste funnel glasses, Mater. Lett. 60 (2006) 929–934.
DOI: 10.1016/j.matlet.2005.10.046
Google Scholar
[7]
S. Hasheminia, A. Nemati, B. Eftekhari Yekta, P. Alizadeh, Preparation and characterisation of diopside-based glass–ceramic foams, Ceram. Int. 38 (2012) 2005–(2010).
DOI: 10.1016/j.ceramint.2011.10.035
Google Scholar
[8]
P.G. Yot, F.O. Méar, Lead extraction from waste funnel cathode-ray tubes glasses by reaction with silicon carbide and titanium nitride, J. Hazard. Mater. 172 (2009) 117–123.
DOI: 10.1016/j.jhazmat.2009.06.137
Google Scholar
[9]
Q. Zhang, F. He, H. Shu et al., Preparation of high strength glass ceramic foams from waste cathode ray tube and germanium tailings, Constr. Build. Mater. 111 (2016) 105–110.
DOI: 10.1016/j.conbuildmat.2016.01.036
Google Scholar
[10]
E.M.M. Ewais, M.A.A. Attia, A.A.M. El-Amir et al., Optimal conditions and significant factors for fabrication of soda lime glass foam from industrial waste using nano AlN, J. Alloys Compd. 747 (2018) 408–415.
DOI: 10.1016/j.jallcom.2018.03.039
Google Scholar
[11]
R. Lebullenger, S. Chenu, J. Rocherullé et al., Glass foams for environmental applications, J. Non-Cryst. Solids 356 (2010) 2562–2568.
DOI: 10.1016/j.jnoncrysol.2010.04.050
Google Scholar
[12]
V. Laur, R. Benzerga, R. Lebullenger et al., Green foams for microwave absorbing applications: Synthesis and characterization, Mater. Res. Bull. 96 (2017) 100–106.
DOI: 10.1016/j.materresbull.2017.01.052
Google Scholar
[13]
A.S. Llaudis, M.J, Orts Tari, F.J. Garcia Tena et al., Foaming of flat glass cullet using Si3N4 and MnO2 powders, Ceram. Int. 35 (2009) 1953–(1959).
DOI: 10.1016/j.ceramint.2008.10.022
Google Scholar
[14]
I.I. Kitaigorodskii, T.L. Shirkevich, Certain properties of nonalkaline foam glass, Glass Ceram. 16(10) (1959) 533–534.
DOI: 10.1007/bf00675249
Google Scholar
[15]
Y. Tian, P. Lu, S. Zhang et al., Mechanism of Surface Depression on Foam Glass, J. Wuhan Univ. Technol.-Mater. Sci. Edit. 31(3) (2016) 538–542.
DOI: 10.1007/s11595-016-1406-8
Google Scholar
[16]
N.M. Bobkova, S.E. Barantseva, E.E. Trusova, Production of foam glass with granite siftings from the Mikashevichi deposit, Glass Ceram. 64(1–2) (2007) 47–50.
DOI: 10.1007/s10717-007-0011-x
Google Scholar
[17]
J.-F. Legendre, New radar absorbent material based of carboned foam glass application to pyramidal radar absorber, Microwave Opt. Technol. Lett. 57(1) (2015) 18–22.
DOI: 10.1002/mop.28769
Google Scholar
[18]
P. Sun, Z. Guo, Preparation of steel slag porous sound-absorbing material using coal powder as pore former, J. Environ. Sci. 36 (2015) 67–75.
DOI: 10.1016/j.jes.2015.04.010
Google Scholar
[19]
Y. Guo, Y. Zhang, H. Huang et al., Novel glass ceramic foams materials based on polishing porcelain waste using the carbon ash waste as foaming agent, Constr. Build. Mater. 125 (2016) 1093–1100.
DOI: 10.1016/j.conbuildmat.2016.08.134
Google Scholar
[20]
A. Mueller, S.N. Sokolova, V.I. Vereshagin, Characteristics of lightweight aggregates from primary and recycled raw materials, Constr. Build. Mater. 22 (2008) 703–712.
DOI: 10.1016/j.conbuildmat.2007.06.009
Google Scholar
[21]
Ya.I. Vaisman, A.A. Ketov, Yu.A. Ketov, M.Yu. Slesarev, The Expansion Kinetics of Cellular Glass in the Thermoplastic State under the Hydrated Mechanism of Gas Formation, Glass Phys. Chem. 43(4) (2017) 330–334.
DOI: 10.1134/s1087659617040174
Google Scholar
[22]
L-J. Hou, T.-Y. Liu, A.-X. Lu, Red mud and fly ash-based ceramic foams using starch and manganese dioxide as foaming agent, Trans. Nonferrous Met. Soc. China. 27 (2017) 591−598.
DOI: 10.1016/s1003-6326(17)60066-9
Google Scholar
[23]
E.A. Yatsenko, B.M. Goltsman, A.V. Ryabova, V.A. Smoliy, Peculiarities of the use of siliceous raw materials of the Russian Far East in the integrated pipeline protection, MATEC Web of Conferences. 242 (2018) #01016.
DOI: 10.1051/matecconf/201824201016
Google Scholar
[24]
E.A. Yatsenko, B.M. Goltsman, V.A. Smoliy et al., Study on the Possibility of Applying Organic Compounds as Pore-Forming Agents for the Synthesis of Foam Glass, Glass Phys. Chem. 45(2) (2019) 138-142.
DOI: 10.1134/s1087659619020135
Google Scholar
[25]
E.A. Yatsenko, B.M. Goltsman, A.S. Kosarev et al., Synthesis of Foamed Glass Based on Slag and a Glycerol Pore-Forming Mixture, Glass Phys. Chem. 44(2) (2018) 152-155.
DOI: 10.1134/s1087659618020177
Google Scholar