[1]
R. R. Safin, G. A. Talipova, N. R. Galyavetdinov, Design of packaging materials based on polylactide and wood filler, International Journal of Engineering and Technology (UAE), p.1089–1091, (2018).
DOI: 10.14419/ijet.v7i4.36.25036
Google Scholar
[2]
Y. Li, H. Shimizu, Toughening of polylactide by melt blending with a biodegradable poly(ether)urethane elastomer, 2007, Volume 7, pp.921-928.
DOI: 10.1002/mabi.200700027
Google Scholar
[3]
N. R. Galyavetdinov, R. R. Safin, R. T. Khasanshina, Wood heat treatment in construction materials production, International Conference on Industrial Engineering, Volume 265 SSP, 2017, pp.146-151.
DOI: 10.4028/www.scientific.net/ssp.265.146
Google Scholar
[4]
L. Averous, C. Fringant, O. Martin, Coextrusion of biodegradable starch-based materials. In: Biopolymer Science: Food and Non-Food Applications, Paris, p.207–212, (1999).
Google Scholar
[5]
R. R. Khasanshin, R. R. Safin, N. R. Galyavetdinov, Use of low-grade vegetable raw materials in production of composites by preliminary processing, International Conference on Industrial Engineering, Volume 265 SSP, 2017, pp.296-302.
DOI: 10.4028/www.scientific.net/ssp.265.296
Google Scholar
[6]
T. Qiang, D. Yu, H. Gao, Y. Wang, Polylactide – Based Wood Plastic Composites Toughened with SBS, 2012, Volume 51, pp.193-198.
DOI: 10.1080/03602559.2011.618518
Google Scholar
[7]
R. R. Safin, I. F. Khakimzyanov, N. R. Galyavetdinov, S. R. Mukhametzyanov, Gasification of torrefied fuel at power generation for decentralized consumers, IOP Conference Series: Earth and Environmental Science, 87(3) (2017) 032035.
DOI: 10.1088/1755-1315/87/3/032035
Google Scholar
[8]
S. Butylina, Comparison of water absorption and mechanical properties of wood–plastic composites made from polypropylene and polylactic acid, Wood Material Science & Engineering, 5:3-4 (2010) 220-228.
DOI: 10.1080/17480272.2010.532233
Google Scholar
[9]
A. R. Shaikhutdinova, R. R. Safin, F. V. Nazipova, S. R. Mukhametzyanov, Use of thermo-modified wood massif in making parametric exterior furniture, International Journal of Engineering and Technology(UAE). 7(4.36 Special Issue 36) (2018) 1112-1116.
DOI: 10.14419/ijet.v7i4.36.25045
Google Scholar
[10]
S. R. Mukhametzyanov, R. R. Safin, A. P. Kainov, Alternative Energy in the Processes of Drying of Thermolabile Materials. 2018 International Multi-Conference on Industrial Engineering and Modern Technologies, FarEastCon 2018 (2018) 8602648.
DOI: 10.1109/fareastcon.2018.8602648
Google Scholar
[11]
C. E. Holy, S. M. Dang, J. E. Davies, M. S. Shoichet, In vitro degradation of a novel poly(lactide-co-glycolide) 75/25 foam. J. Biomaterials, v. 20(13), 1999, pp.1177-85.
DOI: 10.1016/s0142-9612(98)00256-7
Google Scholar
[12]
S. R. Mukhametzyanov, R. R. Safin, P. A. Kainov, Alternative Energy in the Processes of Drying of Thermolabile Materials, International Multi-Conference on Industrial Engineering and Modern Technologies, FarEastCon (2018).
DOI: 10.1109/fareastcon.2018.8602648
Google Scholar
[13]
N. R. Galyavetdinov, R. R. Safin, A. E. Voronin, Analysis of physico-mechanical properties of composites based on polylactide and thermally modifie wood fibers, Materials Science Forum, pp.202-206, (2016).
DOI: 10.4028/www.scientific.net/msf.870.202
Google Scholar
[14]
R. G. Safin, V. A. Lashkov, L. G. Golubev, R. R. Safin, Mathematical model of vacuum-oscillating drying of lumber, Inzhenerno-Fizicheskii Zhurnal, 75 (2), pp.95-98, (2002).
Google Scholar
[15]
T. Qiang, Polylactide-Based Wood Plastic Composites Modified with Linear Low Density Polyethylene/ T. Qiang, D. Yu, Y. Wang, H Gao. Polymer-Plastics Technology and Engineering. 52:2 (2013) 149-156.
DOI: 10.1080/03602559.2012.734359
Google Scholar
[16]
A. A. Fomin, Kinematics of surface formation in milling, Russian Engineering Research, pp.660-662, (2013).
Google Scholar
[17]
R. R. Safin, P. M. Mazurkin, S. R. Mukhametzyanov, A. E. Voronin, R. V. Salimgaraeva, Dynamics of mass of a sample in the course of oscillating vacuum and conductive drying of timber. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM. 17(62) (2017) 97-104.
DOI: 10.5593/sgem2017/62/s26.013
Google Scholar
[18]
J. Pilipovic-Crcic, I. Jalsenjan, Albumin-loaded PLA and PLGA microspheres: in vitro evalution.- J. Boll Chim Foam, v. 138(1), 1999, pp.124-94.
Google Scholar
[19]
H. Peltoniem, D. Hallikainem, T. Towonen, T. Waris, SR-PLLA and SR-PGA miniscrew.- J. Craniomaxillofac/ Surg, v. 27(1), 1999, pp.42-50.
Google Scholar
[20]
W. L. Murfy, D. N. Kohn, D. H. Mooney, Growth of continuous bonelike mineral within porous poly (lactide-co-glycolide) scaffolds in vitro. J. Biomed Mater Res, v. 50(1), 2000, pp.186-94.
DOI: 10.1002/(sici)1097-4636(200004)50:1<50::aid-jbm8>3.0.co;2-f
Google Scholar