Study of the Destructive Properties of Biodegradable Wood-Filled Composite Material

Article Preview

Abstract:

To date, excessive use of non-degradable petrochemical-based polymers has resulted in a serious threat to the environment. In this regard, in recent years, green polymers are receiving more and more attention, because they are biocompatible, biodegradable and resistant in nature. Among these biopolymers, polylactide is considered the most promising alternative to traditional polymers due to its good biodegradability, biocompatibility and thermal stability, acceptable mechanical properties and excellent processability. This article has developed a biodegradable composite material based on polylactide and wood filler, subject to thermal modification. It was established that the addition of the maximum amount of vegetable filler reduces the time of decomposition of the composite, as a result of which it can be used in the packaging, food industry, as well as in agriculture and in everyday life.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

290-295

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. R. Safin, G. A. Talipova, N. R. Galyavetdinov, Design of packaging materials based on polylactide and wood filler, International Journal of Engineering and Technology (UAE), p.1089–1091, (2018).

DOI: 10.14419/ijet.v7i4.36.25036

Google Scholar

[2] Y. Li, H. Shimizu, Toughening of polylactide by melt blending with a biodegradable poly(ether)urethane elastomer, 2007, Volume 7, pp.921-928.

DOI: 10.1002/mabi.200700027

Google Scholar

[3] N. R. Galyavetdinov, R. R. Safin, R. T. Khasanshina, Wood heat treatment in construction materials production, International Conference on Industrial Engineering, Volume 265 SSP, 2017, pp.146-151.

DOI: 10.4028/www.scientific.net/ssp.265.146

Google Scholar

[4] L. Averous, C. Fringant, O. Martin, Coextrusion of biodegradable starch-based materials. In: Biopolymer Science: Food and Non-Food Applications, Paris, p.207–212, (1999).

Google Scholar

[5] R. R. Khasanshin, R. R. Safin, N. R. Galyavetdinov, Use of low-grade vegetable raw materials in production of composites by preliminary processing, International Conference on Industrial Engineering, Volume 265 SSP, 2017, pp.296-302.

DOI: 10.4028/www.scientific.net/ssp.265.296

Google Scholar

[6] T. Qiang, D. Yu, H. Gao, Y. Wang, Polylactide – Based Wood Plastic Composites Toughened with SBS, 2012, Volume 51, pp.193-198.

DOI: 10.1080/03602559.2011.618518

Google Scholar

[7] R. R. Safin, I. F. Khakimzyanov, N. R. Galyavetdinov, S. R. Mukhametzyanov, Gasification of torrefied fuel at power generation for decentralized consumers, IOP Conference Series: Earth and Environmental Science, 87(3) (2017) 032035.

DOI: 10.1088/1755-1315/87/3/032035

Google Scholar

[8] S. Butylina, Comparison of water absorption and mechanical properties of wood–plastic composites made from polypropylene and polylactic acid, Wood Material Science & Engineering, 5:3-4 (2010) 220-228.

DOI: 10.1080/17480272.2010.532233

Google Scholar

[9] A. R. Shaikhutdinova, R. R. Safin, F. V. Nazipova, S. R. Mukhametzyanov, Use of thermo-modified wood massif in making parametric exterior furniture, International Journal of Engineering and Technology(UAE). 7(4.36 Special Issue 36) (2018) 1112-1116.

DOI: 10.14419/ijet.v7i4.36.25045

Google Scholar

[10] S. R. Mukhametzyanov, R. R. Safin, A. P. Kainov, Alternative Energy in the Processes of Drying of Thermolabile Materials. 2018 International Multi-Conference on Industrial Engineering and Modern Technologies, FarEastCon 2018 (2018) 8602648.

DOI: 10.1109/fareastcon.2018.8602648

Google Scholar

[11] C. E. Holy, S. M. Dang, J. E. Davies, M. S. Shoichet, In vitro degradation of a novel poly(lactide-co-glycolide) 75/25 foam. J. Biomaterials, v. 20(13), 1999, pp.1177-85.

DOI: 10.1016/s0142-9612(98)00256-7

Google Scholar

[12] S. R. Mukhametzyanov, R. R. Safin, P. A. Kainov, Alternative Energy in the Processes of Drying of Thermolabile Materials, International Multi-Conference on Industrial Engineering and Modern Technologies, FarEastCon (2018).

DOI: 10.1109/fareastcon.2018.8602648

Google Scholar

[13] N. R. Galyavetdinov, R. R. Safin, A. E. Voronin, Analysis of physico-mechanical properties of composites based on polylactide and thermally modifie wood fibers, Materials Science Forum, pp.202-206, (2016).

DOI: 10.4028/www.scientific.net/msf.870.202

Google Scholar

[14] R. G. Safin, V. A. Lashkov, L. G. Golubev, R. R. Safin, Mathematical model of vacuum-oscillating drying of lumber, Inzhenerno-Fizicheskii Zhurnal, 75 (2), pp.95-98, (2002).

Google Scholar

[15] T. Qiang, Polylactide-Based Wood Plastic Composites Modified with Linear Low Density Polyethylene/ T. Qiang, D. Yu, Y. Wang, H Gao. Polymer-Plastics Technology and Engineering. 52:2 (2013) 149-156.

DOI: 10.1080/03602559.2012.734359

Google Scholar

[16] A. A. Fomin, Kinematics of surface formation in milling, Russian Engineering Research, pp.660-662, (2013).

Google Scholar

[17] R. R. Safin, P. M. Mazurkin, S. R. Mukhametzyanov, A. E. Voronin, R. V. Salimgaraeva, Dynamics of mass of a sample in the course of oscillating vacuum and conductive drying of timber. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM. 17(62) (2017) 97-104.

DOI: 10.5593/sgem2017/62/s26.013

Google Scholar

[18] J. Pilipovic-Crcic, I. Jalsenjan, Albumin-loaded PLA and PLGA microspheres: in vitro evalution.- J. Boll Chim Foam, v. 138(1), 1999, pp.124-94.

Google Scholar

[19] H. Peltoniem, D. Hallikainem, T. Towonen, T. Waris, SR-PLLA and SR-PGA miniscrew.- J. Craniomaxillofac/ Surg, v. 27(1), 1999, pp.42-50.

Google Scholar

[20] W. L. Murfy, D. N. Kohn, D. H. Mooney, Growth of continuous bonelike mineral within porous poly (lactide-co-glycolide) scaffolds in vitro. J. Biomed Mater Res, v. 50(1), 2000, pp.186-94.

DOI: 10.1002/(sici)1097-4636(200004)50:1<50::aid-jbm8>3.0.co;2-f

Google Scholar