[1]
M.C. Rodezno, K. Kaloush, Implementation of asphalt-rubber mixes into the mechanistic empirical pavement design guide. Road Materials and Pavement Design 12(2) (2011) 423–439.
DOI: 10.1080/14680629.2011.9695252
Google Scholar
[2]
M. Díaz Martinez, I. Pérez, Mechanistic-empirical pavement design guide: features and distinctive elements. Revista de la Construcción 14(1) (2015) 32–40.
DOI: 10.4067/s0718-915x2015000100004
Google Scholar
[3]
V.N. Gercog, G.V. Dolgikh, N.V. Kuzin, Calculation criteria for road pavement evenness. Part 1. Substantiating the flatness standards of asphalt pavement. Magazine of Civil Engineering 5(57) (2015) 45–57.
DOI: 10.5862/mce.57.4
Google Scholar
[4]
Q. Li, D.X. Xiao, K.C.P. Wang et al., Mechanistic-empirical pavement design guide (MEPDG): a bird's-eye view. Journal of Modern Transportation 19(2) (2011) 114–133.
DOI: 10.1007/bf03325749
Google Scholar
[5]
X. Guo, D.H. Timm, Automating Mechanistic-Empirical Pavement Design Calibration Studies. The Roles of Accelerated Pavement Testing in Pavement Sustainability (2016) 309–319.
DOI: 10.1007/978-3-319-42797-3_20
Google Scholar
[6]
AASHTO. Mechanistic-Empirical Pavement Design Guide, Interim Edition: A Manual of Practice. American Association of State Highway and Transportation Officials, Washington, D.C. (2008).
Google Scholar
[7]
A.S. Aleksandrov, T.V. Semenova, N.P. Aleksandrova, Analysis of permanent deformations in granular materials of road structures. Road and Bridges 15 (2016) 263–276.
Google Scholar
[8]
A.S. Aleksandrov, G.V. Dolgih A.L. Kalinin, Analysis and modeling of process of residual deformations accumulation in soils and granular materials. IOP Conf. Series: Materials Science and Engineering 262 (2017) 1–7.
DOI: 10.1088/1757-899x/262/1/012004
Google Scholar
[9]
K. Su., L.J. Sun, Y. Hachiya, Rut Prediction for Semi-rigid Asphalt Pavements. First International Symposium on Transportation and Development Innovative Best Practices. Beijing, (2008) 486-491.
DOI: 10.1061/40961(319)80
Google Scholar
[10]
T.B. Moghaddam, M.R. Karim, M. Abdelaziz, A review on fatigue and rutting performance of asphalt mixes. Scientific Research and Essays 6(4) (2011) 670–682.
Google Scholar
[11]
A. Alnedawi, K.P. Nepal, R. Al-Ameri, Effect of vertical stress rest period on deformation behaviour of unbound granular materials: Experimental and numerical investigations. Journal of Rock Mechanics and Geotechnical Engineering (2018).
DOI: 10.1016/j.jrmge.2018.05.004
Google Scholar
[12]
A. Alnedawi, K.P. Nepal, R. Al-Ameri, Permanent deformation prediction model of unbound granular materials for flexible pavement design. Transportation Infrastructure Geotechnology (2018) 1–17.
DOI: 10.1007/s40515-018-00068-1
Google Scholar
[13]
X. Ling et. al., Permanent Deformation Characteristics of Coarse Grained Subgrade Soils under Train-Induced Repeated Load. Advances in Materials Science and Engineering, Volume 2017 15 p. Article ID 6241479.
DOI: 10.1155/2017/6241479
Google Scholar
[14]
P. Hornych, A. El Abd, Selection and evaluation of models for prediction of permanent deformations of unbound granular materials in road pavements. Work Package 5 (2004).
DOI: 10.1080/14680629.2007.9690093
Google Scholar
[15]
N.A. Margan et al., Deformational properties of unbound granular pavement materials. Processing 3rd International Conference on Road and Rail Infrastructure–Cetra (2014) 649–656.
Google Scholar
[16]
A. Niemunis, T. Wichtmann, Separation of time scale in the HCA model for sand. Acta Geophysica 62(5) (2014) 1127-1145.
DOI: 10.2478/s11600-014-0221-x
Google Scholar
[17]
M.S. Rahman, S. Erlingsson, Predicting permanent deformation behaviour of unbound granular materials. International Journal of Pavement Engineering 16(7) (2015) 587–601.
DOI: 10.1080/10298436.2014.943209
Google Scholar
[18]
F. Salour, S. Erlingsson, Characterisation of Permanent Deformation of Silty Sand Subgrades from Multistage RLT Tests. Procedia Engineering 143 (2016) 300–307.
DOI: 10.1016/j.proeng.2016.06.038
Google Scholar
[19]
F. Salour , S. Erlingsson, Permanent deformation characteristics of silty sand subgrades from multistage RLT tests. International Journal of Pavement Engineering 18(3) (2017) 236–246.
DOI: 10.1080/10298436.2015.1065991
Google Scholar
[20]
A. Zainorabidin, D.H. Agustina, Effect of moisture content of cohesive subgrade soil. MATEC Web of Conferences 195 (2018) 1-7. Article Number 03010.
DOI: 10.1051/matecconf/201819503010
Google Scholar
[21]
P. Jitsangiam et. al., A new mechanistic framework for evaluation of cyclic behaviour of unsaturated unbound granular materials. International Journal of GEOMATE 13(39) (2017) 111–123.
DOI: 10.21660/2017.39.95681
Google Scholar
[22]
R. Pratibha, G.L. Sivakumar Babu, G. Madhavi Latha, Stress–Strain Response of Unbound Granular Materials Under Static and Cyclic Loading. Indian Geotech J. 45(4) (2015) 449–457.
DOI: 10.1007/s40098-015-0155-5
Google Scholar
[23]
R.D. Barksdale, Laboratory Evaluation of Rutting in Base course Materials. Proceedings of the 3-rd International Conference on Asphalt Pavements. London, (1972) 161–174.
Google Scholar
[24]
S. Werkmeister, Permanent deformation behaviour of unbound granular materials in pavement constructions. Ph.D. thesis, University of Technology, Dresden, Germany (2003).
Google Scholar
[25]
A. Austin Fundamental characterization of unbound base course materials under cyclic loading. MScE Thesis. Louisiana Tech. University, Louisiana, USA (2009).
DOI: 10.31390/gradschool_theses.2263
Google Scholar
[26]
R.S. Ashtiani Anisotropic characterization and performance prediction of chemically and hydraulically bounded pavement foundations. Ph.D. thesis, Texas A&M University, Texas, USA (2009).
Google Scholar
[27]
A.S. Aleksandrov, Plastic deformation granodiorite gravel and sand and gravel when exposed to cyclic loading triaxial. Magazine of Civil Engineering. 4 (2013) 22–34.
DOI: 10.5862/mce.39.3
Google Scholar
[28]
J. Anochie-Boatehg, Advanced testing and characterization of transportation soils and bituminous sands. Ph.D. thesis, University of Illinois, Urbana, USA (2007).
Google Scholar
[29]
V.P. Panaetov, D.B. Solovev, Interaction of Tops of Domains in Metal Nano of the Film. Materials Science Forum. 945 (2019) 771-775. [Online]. Available: https://doi.org/10.4028/www.scientific.net/MSF.945.771.
DOI: 10.4028/www.scientific.net/msf.945.771
Google Scholar