New Energy-Consuming Carbon Materials Derived from Hydrolytic Lignin

Article Preview

Abstract:

Hydrolytic lignin (HL) has been used in manufacturing of graphitized carbon via HL one-step physical activation. It was found that the layered carbon products of pyrolysis of hydrolytic lignin (AHL) at different temperatures may be used as cathode materials in primary current sources. The galvanostatic discharge of lithium battery at a current density of 100 μA/cm2 between 3.0 and 0.5 V shows that the specific capacity of thermally activated derivative is equal to 845 mA·h/g, while the untreated lignin yields only 190 mA·h/g. The fluorination of both the lignin and its thermally activated form results in higher operating voltage of lithium battery, as seems, due to the involvement of fluorine bound to carbon in electrochemical process. Some fluorinated AHL samples show the promise of their use as supercapacitor electrodes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

814-820

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Linden, T.B. Reddy, Handbook of batteries, third ed., McGraw-hill, New York, (2002).

Google Scholar

[2] T. Nakajima, Fluorine-carbon and fluoride-carbon materials: Chemistry, physics, and applications, CRC Press, Boca Raton, Florida, (1994).

Google Scholar

[3] J.M. Rosas, R. Bereruer, M.J. Valero-Romero, J. Rodrigues-Mirasol, T. Condero, Preparation of different carbon materials by thermochemical of lignin, Frontiers in materials | Carbon-Based Materials, 1 (2014) 1-17. Information on www.frontiersin.org.

DOI: 10.3389/fmats.2014.00029

Google Scholar

[4] S.V. Gnedenkov, D.P. Opra, S.L. Sinebryukhov, A.K. Tsvetnikov, A.Y. Ustinov, V.I. Sergienko, Hydrolysis lignin: electrochemical properties of the organic cathode material for primary lithium battery, J. Ind. Eng. Chem., 20 (2014) 903-910.

DOI: 10.1016/j.jiec.2013.06.021

Google Scholar

[5] G. Milczarek, O. Inganäs, Renewable cathode materials from biopolymer/conjugated polymer interpenetrating networks, Science, 335 (2012) 1468-1471.

DOI: 10.1126/science.1215159

Google Scholar

[6] X. Ma, P. Kolla, Y. Zhao, A.L. Smirnova, H. Fong, Electrospun lignin-derived carbon nanofiber mats surface-decorated with MnO2 nanowh[skers as binder-free supercapacitor electrodes with h[gh performance, J. Power Sources, 325 (2016) 541-548.

DOI: 10.1016/j.jpowsour.2016.06.073

Google Scholar

[7] S.V. Gnedenkov, D.P. Opra, L.А. Zemnukhova, S.L. Sinebryukhov, I.A. Kedrinskii, O.V. Patrusheva, V.I. Sergienko, Electrochemical performance of Klason lignin as a cathode-active material for lithium battery, J. Energ. Chem, 24 (2015) 346-352.

DOI: 10.1016/s2095-4956(15)60321-7

Google Scholar

[8] M.S. Dresselhaus, G. Dresselhaus , In: M. Cardona, G. Güntherodt (Eds.), Light Scattering in Solids, Vol. III, Springer, Berlin, 1982, pp.3-58.

Google Scholar

[9] S.-K. Sze, N. Siddique, J.J. Sloan, R. Escribano, Raman spectroscopic characterization of carbonaceous aerosols, Atmos. Environ., 35 (2001) 561-568.

DOI: 10.1016/s1352-2310(00)00325-3

Google Scholar

[10] T. Jawhari, A. Roid, J. Casado, Raman spectroscopic characterization of some commercially available carbon black materials, Carbon, 33 (1995) 1561-1565.

DOI: 10.1016/0008-6223(95)00117-v

Google Scholar

[11] A.C. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B, 61 (2000) 14095-14107.

DOI: 10.1103/physrevb.61.14095

Google Scholar

[12] B. Dippel, H. Jander, J. Heintzenberg, NIR FT Raman spectroscopic study of flame soot, Phys. Chem. Chem. Phys., 1 (1999) 4707-4712.

DOI: 10.1039/a904529e

Google Scholar

[13] F. Tuinstra, J.L. Koenig, Raman Spectrum of Graphite, J. Phys. Chem., 53 (1970) 1126-1130.

Google Scholar

[14] L.G. Cançado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio, L. N. Coelho, R. Magalhães-Paniago, M. A. Pimenta, General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy, Applied Phys. Let., 88 (2006) 163106. Information on http://apl.aip.org/apl/copyright.jsp.

DOI: 10.1063/1.2196057

Google Scholar

[15] Z. Klusek, W. Kozlowski, Z. Waqar, S. Datta, J.S. Burnell-Gray, I. V. Makarenko, N. R. Gall, E.V. Rutkov, A.Ya. Tontegode, A.N. Titkov, Local electronic edge states of graphene layer deposited on Ir(111) surface studied by STM/CITS, Appl. Surf. Sci., 252 (2005) 1221-1227.

DOI: 10.1016/j.apsusc.2005.02.083

Google Scholar

[16] Y. Kobayashi, K. Fukui, T. Enoki, K. Kusakabe, Y. Kaburagi, Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy, Phys. Rev B, 71 (2005) 193406 (1-4).

DOI: 10.1103/physrevb.71.193406

Google Scholar

[17] W. Walker, S. Grugeon, O. Mentre, S. Laruelle, J.-M. Tarascon, F. Wudl, Ethoxycarbonyl-based organic electrode for Li-batteries, J. American Chem. Soc, 132 (2010) 6517-6523.

DOI: 10.1021/ja1012849

Google Scholar

[18] E.J. Yoo, J. Kim, E. Hosono, H. Zhou, T. Kudo, I. Honma, Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries, Nano Letters, 8 (2008), 2277-2282.

DOI: 10.1021/nl800957b

Google Scholar

[19] L.Zhao, W. Wang, A. Wang, K. Yuan, S. Chen, Y. Yang, A novel polyquinone cathode material for rechargeable lithium batteries, J. Power Sources, 233 (2013) 23-27.

DOI: 10.1016/j.jpowsour.2013.01.103

Google Scholar

[20] W.A. Schalkwijk, B. Scrosati, Advances in lithium-ion batteries, Springer science+busines media, Berlin, (2002).

Google Scholar

[21] B. Scrosati, J. Garche, Lithium Batteries: Status, Prospects and Future, J. of Power Sources, 195 (2010) 2419-2430.

DOI: 10.1016/j.jpowsour.2009.11.048

Google Scholar

[22] K.E. Aifantis, S.A. Hackney, R.V. Kumar, High energy density lithium batteries: Materials, engineering, applications, Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim, (2009).

Google Scholar