[1]
D. Linden, T.B. Reddy, Handbook of batteries, third ed., McGraw-hill, New York, (2002).
Google Scholar
[2]
T. Nakajima, Fluorine-carbon and fluoride-carbon materials: Chemistry, physics, and applications, CRC Press, Boca Raton, Florida, (1994).
Google Scholar
[3]
J.M. Rosas, R. Bereruer, M.J. Valero-Romero, J. Rodrigues-Mirasol, T. Condero, Preparation of different carbon materials by thermochemical of lignin, Frontiers in materials | Carbon-Based Materials, 1 (2014) 1-17. Information on www.frontiersin.org.
DOI: 10.3389/fmats.2014.00029
Google Scholar
[4]
S.V. Gnedenkov, D.P. Opra, S.L. Sinebryukhov, A.K. Tsvetnikov, A.Y. Ustinov, V.I. Sergienko, Hydrolysis lignin: electrochemical properties of the organic cathode material for primary lithium battery, J. Ind. Eng. Chem., 20 (2014) 903-910.
DOI: 10.1016/j.jiec.2013.06.021
Google Scholar
[5]
G. Milczarek, O. Inganäs, Renewable cathode materials from biopolymer/conjugated polymer interpenetrating networks, Science, 335 (2012) 1468-1471.
DOI: 10.1126/science.1215159
Google Scholar
[6]
X. Ma, P. Kolla, Y. Zhao, A.L. Smirnova, H. Fong, Electrospun lignin-derived carbon nanofiber mats surface-decorated with MnO2 nanowh[skers as binder-free supercapacitor electrodes with h[gh performance, J. Power Sources, 325 (2016) 541-548.
DOI: 10.1016/j.jpowsour.2016.06.073
Google Scholar
[7]
S.V. Gnedenkov, D.P. Opra, L.А. Zemnukhova, S.L. Sinebryukhov, I.A. Kedrinskii, O.V. Patrusheva, V.I. Sergienko, Electrochemical performance of Klason lignin as a cathode-active material for lithium battery, J. Energ. Chem, 24 (2015) 346-352.
DOI: 10.1016/s2095-4956(15)60321-7
Google Scholar
[8]
M.S. Dresselhaus, G. Dresselhaus , In: M. Cardona, G. Güntherodt (Eds.), Light Scattering in Solids, Vol. III, Springer, Berlin, 1982, pp.3-58.
Google Scholar
[9]
S.-K. Sze, N. Siddique, J.J. Sloan, R. Escribano, Raman spectroscopic characterization of carbonaceous aerosols, Atmos. Environ., 35 (2001) 561-568.
DOI: 10.1016/s1352-2310(00)00325-3
Google Scholar
[10]
T. Jawhari, A. Roid, J. Casado, Raman spectroscopic characterization of some commercially available carbon black materials, Carbon, 33 (1995) 1561-1565.
DOI: 10.1016/0008-6223(95)00117-v
Google Scholar
[11]
A.C. Ferrari and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Phys. Rev. B, 61 (2000) 14095-14107.
DOI: 10.1103/physrevb.61.14095
Google Scholar
[12]
B. Dippel, H. Jander, J. Heintzenberg, NIR FT Raman spectroscopic study of flame soot, Phys. Chem. Chem. Phys., 1 (1999) 4707-4712.
DOI: 10.1039/a904529e
Google Scholar
[13]
F. Tuinstra, J.L. Koenig, Raman Spectrum of Graphite, J. Phys. Chem., 53 (1970) 1126-1130.
Google Scholar
[14]
L.G. Cançado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio, L. N. Coelho, R. Magalhães-Paniago, M. A. Pimenta, General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy, Applied Phys. Let., 88 (2006) 163106. Information on http://apl.aip.org/apl/copyright.jsp.
DOI: 10.1063/1.2196057
Google Scholar
[15]
Z. Klusek, W. Kozlowski, Z. Waqar, S. Datta, J.S. Burnell-Gray, I. V. Makarenko, N. R. Gall, E.V. Rutkov, A.Ya. Tontegode, A.N. Titkov, Local electronic edge states of graphene layer deposited on Ir(111) surface studied by STM/CITS, Appl. Surf. Sci., 252 (2005) 1221-1227.
DOI: 10.1016/j.apsusc.2005.02.083
Google Scholar
[16]
Y. Kobayashi, K. Fukui, T. Enoki, K. Kusakabe, Y. Kaburagi, Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy, Phys. Rev B, 71 (2005) 193406 (1-4).
DOI: 10.1103/physrevb.71.193406
Google Scholar
[17]
W. Walker, S. Grugeon, O. Mentre, S. Laruelle, J.-M. Tarascon, F. Wudl, Ethoxycarbonyl-based organic electrode for Li-batteries, J. American Chem. Soc, 132 (2010) 6517-6523.
DOI: 10.1021/ja1012849
Google Scholar
[18]
E.J. Yoo, J. Kim, E. Hosono, H. Zhou, T. Kudo, I. Honma, Reversible Li Storage of Graphene Nanosheet Families for Use in Rechargeable Lithium Ion Batteries, Nano Letters, 8 (2008), 2277-2282.
DOI: 10.1021/nl800957b
Google Scholar
[19]
L.Zhao, W. Wang, A. Wang, K. Yuan, S. Chen, Y. Yang, A novel polyquinone cathode material for rechargeable lithium batteries, J. Power Sources, 233 (2013) 23-27.
DOI: 10.1016/j.jpowsour.2013.01.103
Google Scholar
[20]
W.A. Schalkwijk, B. Scrosati, Advances in lithium-ion batteries, Springer science+busines media, Berlin, (2002).
Google Scholar
[21]
B. Scrosati, J. Garche, Lithium Batteries: Status, Prospects and Future, J. of Power Sources, 195 (2010) 2419-2430.
DOI: 10.1016/j.jpowsour.2009.11.048
Google Scholar
[22]
K.E. Aifantis, S.A. Hackney, R.V. Kumar, High energy density lithium batteries: Materials, engineering, applications, Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim, (2009).
Google Scholar