[1]
L.S. Nair, C.T. Laurencin, Biodegradable polymers as biomaterials, Prog. Polym. Sci. 32(8–9) (2007) 762-798.
Google Scholar
[2]
Y. Ji, K. Ghosh, X.Z. Shu et al., Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds, Biomaterials. 27(20) (2006) 3782–3792.
DOI: 10.1016/j.biomaterials.2006.02.037
Google Scholar
[3]
E. Chudinova, M. Surmeneva, A. Koptioug et al., Additive manufactured Ti6Al4V scaffolds with the RF-magnetron sputter deposited hydroxyapatite coating, J. Phys. Conf. Ser. 669 (2016) 12004.
DOI: 10.1088/1742-6596/669/1/012004
Google Scholar
[4]
A.V. Maksimkin, F.S. Senatov, N.Y. Anisimova, et al., Multilayer porous UHMWPE scaffolds for bone defects replacement, Materials Science and Engineering. 73 (2017) 366–372.
DOI: 10.1016/j.msec.2016.12.104
Google Scholar
[5]
H. Dietmarw, Scaffold design and fabrication technologies for engineering tissues – state of the art and future perspectives, J. Biomater. Sci. Polymer Edn. 12(1) (2001) 107–124.
Google Scholar
[6]
N. Taki, J. Tatro, J. Nalepka et al., Polyethylene and titanium particles induce osteolysis by similar, lymphocyte-independent, mechanisms, J. Orthop. Res. 23(2) (2005) 376–383.
DOI: 10.1016/j.orthres.2004.08.023
Google Scholar
[7]
M.I.Z. Ridzwan, S. Shuib, A.Y. Hassan et al., Problem of stress shielding and improvement to the hip implant designs: A review, Journal of Medical Sciences. 7(3) (2007) 460–467.
DOI: 10.3923/jms.2007.460.467
Google Scholar
[8]
T. Karachalios, C. Tsatsaronis, G. Efraimis et al., The Long-Term Clinical Relevance of Calcar Atrophy Caused by Stress Shielding in Total Hip Arthroplasty, J. Arthroplasty. 19 (2004) 469–475.
DOI: 10.1016/j.arth.2003.12.081
Google Scholar
[9]
M.A. Velasco, C.A. Narváez-Tovar, D.A. Garzón-Alvarado, Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering, Biomed Res. Int. (2015) 1–21.
DOI: 10.1155/2015/729076
Google Scholar
[10]
J. Dang, K. Leon, Natural polymers for gene delivery and tissue engineering, Adv. Drug Deliv. Rev. 58(4) (2006) 487–499.
Google Scholar
[11]
S. Higashi, T. Yamamuro, T. Nakamura et al., Polymer-hydroxyapatite composites for biodegradable bone fillers, Biomaterials. 7(3) (1986) 183–187.
DOI: 10.1016/0142-9612(86)90099-2
Google Scholar
[12]
I. Armentano et al. Biodegradable polymer matrix nanocomposites for tissue engineering: a review, Polymer Degradation and Stability. 95 (2010) 2126–2146.
DOI: 10.1016/j.polymdegradstab.2010.06.007
Google Scholar
[13]
R.M. Touyz, Magnesium in clinical medicine, Frontiers in Bioscience. 9 (2004) 1278–1293.
Google Scholar
[14]
L.A. Martini, Magnesium Supplementation and Bone Turnover, Nutr Rev. 57 (1999).
Google Scholar
[15]
S.V. Gnedenkov, O.A. Khrisanfova, A.G. Zavidnaya, PEO Coatings Obtained on an Mg-Mn Type Alloy under Unipolar and Bipolar Modes in Silicate-Containing Electrolytes, Surf. Coat. Technol. 204 (2010) 2316–2322.
DOI: 10.1016/j.surfcoat.2009.12.024
Google Scholar
[16]
J.E. Gray, B. Luan, Protective coatings on magnesium and its alloys - a critical review, Journal of Alloys and Compounds. 336 (2002) 88–113.
DOI: 10.1016/s0925-8388(01)01899-0
Google Scholar
[17]
A. Abdal-Hay, M. Dewidar, J. Lim, J.K. Lim, Enhanced biocorrosion resistance of surface modified magnesium alloys using inorganic/organic composite layer for biomedical applications, Ceramics International. 40 (2014) 2237–2247.
DOI: 10.1016/j.ceramint.2013.07.142
Google Scholar
[18]
S.V. Gnedenkov, S.L. Sinebryukhov, V.I. Sergienko, Composite multifunctional coatings on metals and alloys formed by plasma electrolytic oxidation, Vladivostok: Dalnauka, (2013).
Google Scholar
[19]
S. Agarwal, J. Curtin, B. Duffy, S. Jaiswal, Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications, Materials Science and Engineering. 68 (2016) 948–963.
DOI: 10.1016/j.msec.2016.06.020
Google Scholar
[20]
A. Kucharczyk, K. Naplocha, J.W. Kaczmar, Current Status and Recent Developments in Porous Magnesium Fabrication, Adv. Eng. Mater. 20 (2018) 1–16.
DOI: 10.1002/adem.201700562
Google Scholar
[21]
N. Sezer, Z. Evis, S.M. Kayhan et al. Review of magnesium-based biomaterials and their applications, Journal of Magnesium and Alloys. 6 (2018) 23–43.
DOI: 10.1016/j.jma.2018.02.003
Google Scholar
[22]
A.B. Podgorbunsky, K.V. Nadaraia, I.M. Imshinetsky, S.L. Sinebryukhov and S.V. Gnedenkov, Formation on magnesium alloy MA8 bioactive coatings containing nanosized hydroxyapatite, Journal of Physics: Conference Series. 1092 (2018) 012117.
DOI: 10.1088/1742-6596/1092/1/012117
Google Scholar
[23]
A.S. Sitnikov, V.V. Bordounov, V.S. Dmitriyev, G.N. Gladyshev, O.L. Vasiyeva, I.A. Sobolev, S.V. Bordounov, Ionselective Fibrous Materials on a basis of Waste Thermoplastics, Proceeding of the 5th Korea-Russia International Symposium on Science and Technology KORUS. 2 (2001) 200-202.
DOI: 10.1109/korus.2001.975227
Google Scholar
[24]
V.V. Bordunov, S.V. Bordunov and I.A. Sobolev, RF Patent 2179600 (2002).
Google Scholar
[25]
M.D. Sizova, V.P. Volkov, L.O. Bunina, Modified polyolefin binder with improved adhesion properties, synthesized in a solid phase. Plasticheskie Massy. 5 (1996) 7-12.
Google Scholar
[26]
Ch. Shuquan, K. Bin, D. Yaodong, Sh.D. Chen, Synthesis of antimicrobial silver nanoparticles on silk fibers via γ-radiation, J Appl Polym Sci. (2009) 36-41.
Google Scholar
[27]
M.A. Sarmadi, J.Y. Kang, Textile plasma treatment review – natural polymer-based textiles, ATCC Review. 4(10) (2004) 28-32.
Google Scholar
[28]
M. Gorjanc, P. Recelj, M. Gorenšek, Plasma Technology for Textile Purposes, Tekstilec. 50(10-12) (2007) 262-266.
Google Scholar
[29]
A. Fridman, Plasma chemistry, Cambridge University Press, New York, (2008).
Google Scholar
[30]
N. Prorokova, A. Chorev, S. Kuzmin, S. Vavilova,V. Prorokov, Chemical Method of Fibrous Materials Surface Activation on the Basis of Polyethilene Terephthalate (PET), Chemistry & Chemical Technology. 8(3) (2014) 293 – 302.
DOI: 10.23939/chcht08.03.293
Google Scholar
[31]
S.M. Kuzmin, N.P. Prorokova, A.V. Khorev, Plasma-Assisted Modification of Textile Yarns in Liquid Environment. In: A. El. Nemr (Ed) Textiles: Types, Uses and Production Methoda, Nova Science Publishers, Inc., New York. (2012) 557 – 578.
Google Scholar
[32]
N. I. Tchernyshev, O. E. Sysoev, D. B. Solovev, E. P. Kiselyov, Basic Robotecnical Platform for Implementation of Accurate Farming Technologies. Bulletin of Electrical Engineering and Informatics (BEEI). 7(4) (2018) 522-528. [Online]. Available: http://dx.doi.org/10.11591/ eei.v7i4.920.
DOI: 10.11591/eei.v7i4.920
Google Scholar
[33]
V.A. Gurieva, Physical and chemical studies of the use of dunites in decorative and finishing ceramics, Orenburg, 2007, 133.
Google Scholar
[34]
P.I. Bozhenov, Complex use of mineral raw materials and ecology, M .: Publishing House of the Association of construction universities, 1994, 263 p.
Google Scholar
[35]
V.A. Gurieva, Application of silicate-containing associated products of mining and processing plants in the production of ceramics, News of universities, Construction, 2008, 596.
Google Scholar
[36]
O. Gencel Cay, Properties of bricks with waste ferrochromium slag and zeolite, Journal of Cleaner Production, 2016, pp.112-113.
DOI: 10.1016/j.jclepro.2013.06.055
Google Scholar
[37]
L. Welington, Incorporation of residues from the minero-metallurgical industry in the production of clayelime brick, Journal of Cleaner Production, 2015, pp.505-510.
DOI: 10.1016/j.jclepro.2014.09.013
Google Scholar
[38]
Handbook for the production of building ceramics, vol. 3, Wall and roofing ceramics ed. M.M. Naumova, K.A. Nokhratyan, Moscow: State publishing house of literature on construction, architecture and building materials, 1962, 699 p.
Google Scholar
[39]
J. Otton, S. Ratton, V.A. Vasnev, G.D. Markova, K.M. Nametov, V.I. Bakhmutov, L.I. Komarova, S.V. Vinogradova, and V.V. Korshak, J. Polym. Sci., Part A. 26 (1988) 2199.
DOI: 10.1002/pola.1988.080260816
Google Scholar
[40]
G.D. Lei and K.Y. Choi, Industrial & engineering chemistry research. 31 (1992) 769.
Google Scholar