Composite Materials Based on Magnesium and Calcium Phosphate Compounds

Article Preview

Abstract:

This paper presents the process and results of the formation of multifunctional materials based on magnesium for the needs of implant surgery. An integrated approach has been developed, including: (i) the synthesis of porous magnesium preforms by means of a powder metallurgical process; (ii) formation of composites based on synthesized nanoscale hydroxyapatite powder and magnesium metal powder by spark plasma sintering technology.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

796-801

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.S. Nair, C.T. Laurencin, Biodegradable polymers as biomaterials, Prog. Polym. Sci. 32(8–9) (2007) 762-798.

Google Scholar

[2] Y. Ji, K. Ghosh, X.Z. Shu et al., Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds, Biomaterials. 27(20) (2006) 3782–3792.

DOI: 10.1016/j.biomaterials.2006.02.037

Google Scholar

[3] E. Chudinova, M. Surmeneva, A. Koptioug et al., Additive manufactured Ti6Al4V scaffolds with the RF-magnetron sputter deposited hydroxyapatite coating, J. Phys. Conf. Ser. 669 (2016) 12004.

DOI: 10.1088/1742-6596/669/1/012004

Google Scholar

[4] A.V. Maksimkin, F.S. Senatov, N.Y. Anisimova, et al., Multilayer porous UHMWPE scaffolds for bone defects replacement, Materials Science and Engineering. 73 (2017) 366–372.

DOI: 10.1016/j.msec.2016.12.104

Google Scholar

[5] H. Dietmarw, Scaffold design and fabrication technologies for engineering tissues – state of the art and future perspectives, J. Biomater. Sci. Polymer Edn. 12(1) (2001) 107–124.

Google Scholar

[6] N. Taki, J. Tatro, J. Nalepka et al., Polyethylene and titanium particles induce osteolysis by similar, lymphocyte-independent, mechanisms, J. Orthop. Res. 23(2) (2005) 376–383.

DOI: 10.1016/j.orthres.2004.08.023

Google Scholar

[7] M.I.Z. Ridzwan, S. Shuib, A.Y. Hassan et al., Problem of stress shielding and improvement to the hip implant designs: A review, Journal of Medical Sciences. 7(3) (2007) 460–467.

DOI: 10.3923/jms.2007.460.467

Google Scholar

[8] T. Karachalios, C. Tsatsaronis, G. Efraimis et al., The Long-Term Clinical Relevance of Calcar Atrophy Caused by Stress Shielding in Total Hip Arthroplasty, J. Arthroplasty. 19 (2004) 469–475.

DOI: 10.1016/j.arth.2003.12.081

Google Scholar

[9] M.A. Velasco, C.A. Narváez-Tovar, D.A. Garzón-Alvarado, Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering, Biomed Res. Int. (2015) 1–21.

DOI: 10.1155/2015/729076

Google Scholar

[10] J. Dang, K. Leon, Natural polymers for gene delivery and tissue engineering, Adv. Drug Deliv. Rev. 58(4) (2006) 487–499.

Google Scholar

[11] S. Higashi, T. Yamamuro, T. Nakamura et al., Polymer-hydroxyapatite composites for biodegradable bone fillers, Biomaterials. 7(3) (1986) 183–187.

DOI: 10.1016/0142-9612(86)90099-2

Google Scholar

[12] I. Armentano et al. Biodegradable polymer matrix nanocomposites for tissue engineering: a review, Polymer Degradation and Stability. 95 (2010) 2126–2146.

DOI: 10.1016/j.polymdegradstab.2010.06.007

Google Scholar

[13] R.M. Touyz, Magnesium in clinical medicine, Frontiers in Bioscience. 9 (2004) 1278–1293.

Google Scholar

[14] L.A. Martini, Magnesium Supplementation and Bone Turnover, Nutr Rev. 57 (1999).

Google Scholar

[15] S.V. Gnedenkov, O.A. Khrisanfova, A.G. Zavidnaya, PEO Coatings Obtained on an Mg-Mn Type Alloy under Unipolar and Bipolar Modes in Silicate-Containing Electrolytes, Surf. Coat. Technol. 204 (2010) 2316–2322.

DOI: 10.1016/j.surfcoat.2009.12.024

Google Scholar

[16] J.E. Gray, B. Luan, Protective coatings on magnesium and its alloys - a critical review, Journal of Alloys and Compounds. 336 (2002) 88–113.

DOI: 10.1016/s0925-8388(01)01899-0

Google Scholar

[17] A. Abdal-Hay, M. Dewidar, J. Lim, J.K. Lim, Enhanced biocorrosion resistance of surface modified magnesium alloys using inorganic/organic composite layer for biomedical applications, Ceramics International. 40 (2014) 2237–2247.

DOI: 10.1016/j.ceramint.2013.07.142

Google Scholar

[18] S.V. Gnedenkov, S.L. Sinebryukhov, V.I. Sergienko, Composite multifunctional coatings on metals and alloys formed by plasma electrolytic oxidation, Vladivostok: Dalnauka, (2013).

Google Scholar

[19] S. Agarwal, J. Curtin, B. Duffy, S. Jaiswal, Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications, Materials Science and Engineering. 68 (2016) 948–963.

DOI: 10.1016/j.msec.2016.06.020

Google Scholar

[20] A. Kucharczyk, K. Naplocha, J.W. Kaczmar, Current Status and Recent Developments in Porous Magnesium Fabrication, Adv. Eng. Mater. 20 (2018) 1–16.

DOI: 10.1002/adem.201700562

Google Scholar

[21] N. Sezer, Z. Evis, S.M. Kayhan et al. Review of magnesium-based biomaterials and their applications, Journal of Magnesium and Alloys. 6 (2018) 23–43.

DOI: 10.1016/j.jma.2018.02.003

Google Scholar

[22] A.B. Podgorbunsky, K.V. Nadaraia, I.M. Imshinetsky, S.L. Sinebryukhov and S.V. Gnedenkov, Formation on magnesium alloy MA8 bioactive coatings containing nanosized hydroxyapatite, Journal of Physics: Conference Series. 1092 (2018) 012117.

DOI: 10.1088/1742-6596/1092/1/012117

Google Scholar

[23] A.S. Sitnikov, V.V. Bordounov, V.S. Dmitriyev, G.N. Gladyshev, O.L. Vasiyeva, I.A. Sobolev, S.V. Bordounov, Ionselective Fibrous Materials on a basis of Waste Thermoplastics, Proceeding of the 5th Korea-Russia International Symposium on Science and Technology KORUS. 2 (2001) 200-202.

DOI: 10.1109/korus.2001.975227

Google Scholar

[24] V.V. Bordunov, S.V. Bordunov and I.A. Sobolev, RF Patent 2179600 (2002).

Google Scholar

[25] M.D. Sizova, V.P. Volkov, L.O. Bunina, Modified polyolefin binder with improved adhesion properties, synthesized in a solid phase. Plasticheskie Massy. 5 (1996) 7-12.

Google Scholar

[26] Ch. Shuquan, K. Bin, D. Yaodong, Sh.D. Chen, Synthesis of antimicrobial silver nanoparticles on silk fibers via γ-radiation, J Appl Polym Sci. (2009) 36-41.

Google Scholar

[27] M.A. Sarmadi, J.Y. Kang, Textile plasma treatment review – natural polymer-based textiles, ATCC Review. 4(10) (2004) 28-32.

Google Scholar

[28] M. Gorjanc, P. Recelj, M. Gorenšek, Plasma Technology for Textile Purposes, Tekstilec. 50(10-12) (2007) 262-266.

Google Scholar

[29] A. Fridman, Plasma chemistry, Cambridge University Press, New York, (2008).

Google Scholar

[30] N. Prorokova, A. Chorev, S. Kuzmin, S. Vavilova,V. Prorokov, Chemical Method of Fibrous Materials Surface Activation on the Basis of Polyethilene Terephthalate (PET), Chemistry & Chemical Technology. 8(3) (2014) 293 – 302.

DOI: 10.23939/chcht08.03.293

Google Scholar

[31] S.M. Kuzmin, N.P. Prorokova, A.V. Khorev, Plasma-Assisted Modification of Textile Yarns in Liquid Environment. In: A. El. Nemr (Ed) Textiles: Types, Uses and Production Methoda, Nova Science Publishers, Inc., New York. (2012) 557 – 578.

Google Scholar

[32] N. I. Tchernyshev, O. E. Sysoev, D. B. Solovev, E. P. Kiselyov, Basic Robotecnical Platform for Implementation of Accurate Farming Technologies. Bulletin of Electrical Engineering and Informatics (BEEI). 7(4) (2018) 522-528. [Online]. Available: http://dx.doi.org/10.11591/ eei.v7i4.920.

DOI: 10.11591/eei.v7i4.920

Google Scholar

[33] V.A. Gurieva, Physical and chemical studies of the use of dunites in decorative and finishing ceramics, Orenburg, 2007, 133.

Google Scholar

[34] P.I. Bozhenov, Complex use of mineral raw materials and ecology, M .: Publishing House of the Association of construction universities, 1994, 263 p.

Google Scholar

[35] V.A. Gurieva, Application of silicate-containing associated products of mining and processing plants in the production of ceramics, News of universities, Construction, 2008, 596.

Google Scholar

[36] O. Gencel Cay, Properties of bricks with waste ferrochromium slag and zeolite, Journal of Cleaner Production, 2016, pp.112-113.

DOI: 10.1016/j.jclepro.2013.06.055

Google Scholar

[37] L. Welington, Incorporation of residues from the minero-metallurgical industry in the production of clayelime brick, Journal of Cleaner Production, 2015, pp.505-510.

DOI: 10.1016/j.jclepro.2014.09.013

Google Scholar

[38] Handbook for the production of building ceramics, vol. 3, Wall and roofing ceramics ed. M.M. Naumova, K.A. Nokhratyan, Moscow: State publishing house of literature on construction, architecture and building materials, 1962, 699 p.

Google Scholar

[39] J. Otton, S. Ratton, V.A. Vasnev, G.D. Markova, K.M. Nametov, V.I. Bakhmutov, L.I. Komarova, S.V. Vinogradova, and V.V. Korshak, J. Polym. Sci., Part A. 26 (1988) 2199.

DOI: 10.1002/pola.1988.080260816

Google Scholar

[40] G.D. Lei and K.Y. Choi, Industrial & engineering chemistry research. 31 (1992) 769.

Google Scholar