Dry Adhesive Friction Process Regularities during Frictional Contact of Heterogeneous “Copper-Aluminum” System Materials

Article Preview

Abstract:

By means of optical and scanning electron microscopy the surface layer structure of aluminum alloy AMg5 samples with introduced copper part after adhesive frictional contact with AISI 420 steel counterbody was studied. It is revealed that under plastic deformation and material fragmentation in the frictional contact zone a complex mixture of different phase layers is formed due to the formation of different flows of aluminum alloy and copper during friction. Mechanical mixing of a material occurs on all length of a friction path with different intensity depending on distance to copper fragment. Both laminar and turbulent flows of material are formed in the surface layer, as well as a wide range of solid solutions, intermetallic phases and mechanical mixtures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

785-790

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Abbasi, M. Givi, B. Bagheri, Application of vibration to enhance efficiency of friction stir processing, Transactions of Nonferrous Metals Society of China. 29 (7) (2019) 1393-1400.

DOI: 10.1016/s1003-6326(19)65046-6

Google Scholar

[2] R.A. Kumar, S. Ramesh, E.S. Kedarvignesh, M.S. Aravind Arulchelvam, S.Anjunath, Review of Friction Stir Processing of Magnesium Alloys, Materials Today: Proceedings. 16 (2) (2019) 1320-1324.

DOI: 10.1016/j.matpr.2019.05.230

Google Scholar

[3] Z.Y. Ma, Friction stir processing technology: A review, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 39 (3) (2008) 642-658.

DOI: 10.1007/s11661-007-9459-0

Google Scholar

[4] G. Azimi-Roeen, S.F. Kashani-Bozorg, M. Nosko, P. Švec Reactive mechanism and mechanical properties of in-situ hybrid nano-composites fabricated from an Al–Fe2O3 system by friction stir processing, Mater. Charact. 127 (2017) 279-287.

DOI: 10.1016/j.matchar.2017.03.007

Google Scholar

[5] S.K. Singh, R.J. Immanuel, S. Babu, S.K. Panigrahi, G.D. Janaki Ram, Influence of multi-pass friction stir processing on wear behaviour and machinability of an Al-Si hypoeutectic A356 alloy, J. Mater. Process. Technol. 236 (2016) 252–262.

DOI: 10.1016/j.jmatprotec.2016.05.019

Google Scholar

[6] P. Kurtyka, N. Rylko, T. Tokarski, A. Wójcicka, A. Pietras, Cast aluminium matrix composites modified with using FSP process – Changing of the structure and mechanical properties, Compos. Struct. 133 (2015) 959–967.

DOI: 10.1016/j.compstruct.2015.07.122

Google Scholar

[7] S.Y. Tarasov, V.E. Rubtsov, E.A. Kolubaev, A proposed diffusion-controlled wear mechanism of alloy steel friction stir welding (FSW) tools used on an aluminum alloy, Wear. 318 (1-2) (2014) 130-134.

DOI: 10.1016/j.wear.2014.06.014

Google Scholar

[8] S.Y. Tarasov, V.E. Rubtsov, S.V. Fortuna, A.A. Eliseev, A.V. Chumaevsky, T.A. Kalashnikova, E.A. Kolubaev, Ultrasonic-assisted aging in friction stir welding on Al-Cu-Li-Mg aluminum alloy, Welding in the World. 61 (4) (2017) 679-690.

DOI: 10.1007/s40194-017-0447-8

Google Scholar

[9] S.Y. Tarasov, V.E. Rubtsov, E.A. Kolubaev, S.F. Gnyusov, Y.A. Kudinov, Radioscopy of remnant joint line in a friction stir welded seam, Russ. J. Nondestr. Test. 51 (9) (2015) 573-579.

DOI: 10.1134/s1061830915090090

Google Scholar

[10] S. Malopheyev, S. Mironov, V. Kulitskiy, R. Kaibyshev, Friction-stir welding of ultra-fine grained sheets of Al–Mg–Sc–Zr alloy, Mater. Sci. Eng., A. 624 (2015) 132-139.

DOI: 10.1016/j.msea.2014.11.079

Google Scholar

[11] S. Malopheyev, S. Mironov, I. Vysotskiy, R. Kaibyshev, Superplasticity of friction-stir welded Al–Mg–Sc sheets with ultrafine-grained microstructure, Mater. Sci. Eng., A. 649 (2016) 85-92.

DOI: 10.1016/j.msea.2015.09.106

Google Scholar

[12] S. Malopheyev, V. Kulitskiy, S. Mironov, D. Zhemchuzhnikova, R. Kaibyshev, Friction-stir welding of an Al–Mg–Sc–Zr alloy in as-fabricated and work-hardened conditions, Mater. Sci. Eng., A. 600 (2014) 159-170.

DOI: 10.1016/j.msea.2014.02.018

Google Scholar

[13] Y. Morisada, H. Fujii, T. Nagaoka, K. Nogi, M. Fukusumi, Fullerene/A5083 composites fabricated by material flow during friction stir processing, J. Composites: Part A. 38 (2007) 2097-2101.

DOI: 10.1016/j.compositesa.2007.07.004

Google Scholar

[14] C.J. Lee, J.C. Huang, High Strain Rate Superplasticity of Mg Based Composites Fabricated by Friction Stir Processing, Mater. Trans. 47 (2006) 2773-2778.

DOI: 10.2320/matertrans.47.2773

Google Scholar

[15] K. Sun, Q.Y. Shi, Y.J. Sun, G.Q. Chen, Microstructure and mechanical property of nano-SiCp reinforced high strength Mg bulk composites produced by friction stir processing, Mater. Sci. Eng. A. 547 (2012) 32-37.

DOI: 10.1016/j.msea.2012.03.071

Google Scholar

[16] M. Dixit, J.W. Newkirk, R.S. Mishra, Properties of friction stir-processed Al 1100–NiTi composite, Scripta Mater. 56 (2007) 541-544.

DOI: 10.1016/j.scriptamat.2006.11.006

Google Scholar

[17] D.R. Ni, J.J. Wang, Z.N. Zhou, Z.Y. Ma, Fabrication and mechanical properties of bulk NiTip/Al composites prepared by friction stir processing, J. Alloys Compd. 586 (2014) 368-374.

DOI: 10.1016/j.jallcom.2013.10.013

Google Scholar

[18] Q. Liu, L. Ke, F. Liu, C. Huang, L. Xing, Microstructure and mechanical property of multi-walled carbon nanotubes reinforced aluminum matrix composites fabricated by friction stir processing, Mater. Des. 45 (2013) 343-348.

DOI: 10.1016/j.matdes.2012.08.036

Google Scholar

[19] W. Wang, Q.-Y. Shi, P. Liu, H.-K. Li, T. Li, A novel way to produce bulk SiCp reinforced aluminum metal matrix composites by friction stir processing, J. Mater. Process. Technol. 209 (2009) 2099-2103.

DOI: 10.1016/j.jmatprotec.2008.05.001

Google Scholar

[20] Z. Du, M.J. Tan, J.F. Guo, G. Bi, J. Wei, Fabrication of a new Al-Al2O3-CNTs composite using friction stir processing (FSP), Mater. Sci. Eng. A. 667 (2016) 125-131.

DOI: 10.1016/j.msea.2016.04.094

Google Scholar