[1]
M. Abbasi, M. Givi, B. Bagheri, Application of vibration to enhance efficiency of friction stir processing, Transactions of Nonferrous Metals Society of China. 29 (7) (2019) 1393-1400.
DOI: 10.1016/s1003-6326(19)65046-6
Google Scholar
[2]
R.A. Kumar, S. Ramesh, E.S. Kedarvignesh, M.S. Aravind Arulchelvam, S.Anjunath, Review of Friction Stir Processing of Magnesium Alloys, Materials Today: Proceedings. 16 (2) (2019) 1320-1324.
DOI: 10.1016/j.matpr.2019.05.230
Google Scholar
[3]
Z.Y. Ma, Friction stir processing technology: A review, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 39 (3) (2008) 642-658.
DOI: 10.1007/s11661-007-9459-0
Google Scholar
[4]
G. Azimi-Roeen, S.F. Kashani-Bozorg, M. Nosko, P. Švec Reactive mechanism and mechanical properties of in-situ hybrid nano-composites fabricated from an Al–Fe2O3 system by friction stir processing, Mater. Charact. 127 (2017) 279-287.
DOI: 10.1016/j.matchar.2017.03.007
Google Scholar
[5]
S.K. Singh, R.J. Immanuel, S. Babu, S.K. Panigrahi, G.D. Janaki Ram, Influence of multi-pass friction stir processing on wear behaviour and machinability of an Al-Si hypoeutectic A356 alloy, J. Mater. Process. Technol. 236 (2016) 252–262.
DOI: 10.1016/j.jmatprotec.2016.05.019
Google Scholar
[6]
P. Kurtyka, N. Rylko, T. Tokarski, A. Wójcicka, A. Pietras, Cast aluminium matrix composites modified with using FSP process – Changing of the structure and mechanical properties, Compos. Struct. 133 (2015) 959–967.
DOI: 10.1016/j.compstruct.2015.07.122
Google Scholar
[7]
S.Y. Tarasov, V.E. Rubtsov, E.A. Kolubaev, A proposed diffusion-controlled wear mechanism of alloy steel friction stir welding (FSW) tools used on an aluminum alloy, Wear. 318 (1-2) (2014) 130-134.
DOI: 10.1016/j.wear.2014.06.014
Google Scholar
[8]
S.Y. Tarasov, V.E. Rubtsov, S.V. Fortuna, A.A. Eliseev, A.V. Chumaevsky, T.A. Kalashnikova, E.A. Kolubaev, Ultrasonic-assisted aging in friction stir welding on Al-Cu-Li-Mg aluminum alloy, Welding in the World. 61 (4) (2017) 679-690.
DOI: 10.1007/s40194-017-0447-8
Google Scholar
[9]
S.Y. Tarasov, V.E. Rubtsov, E.A. Kolubaev, S.F. Gnyusov, Y.A. Kudinov, Radioscopy of remnant joint line in a friction stir welded seam, Russ. J. Nondestr. Test. 51 (9) (2015) 573-579.
DOI: 10.1134/s1061830915090090
Google Scholar
[10]
S. Malopheyev, S. Mironov, V. Kulitskiy, R. Kaibyshev, Friction-stir welding of ultra-fine grained sheets of Al–Mg–Sc–Zr alloy, Mater. Sci. Eng., A. 624 (2015) 132-139.
DOI: 10.1016/j.msea.2014.11.079
Google Scholar
[11]
S. Malopheyev, S. Mironov, I. Vysotskiy, R. Kaibyshev, Superplasticity of friction-stir welded Al–Mg–Sc sheets with ultrafine-grained microstructure, Mater. Sci. Eng., A. 649 (2016) 85-92.
DOI: 10.1016/j.msea.2015.09.106
Google Scholar
[12]
S. Malopheyev, V. Kulitskiy, S. Mironov, D. Zhemchuzhnikova, R. Kaibyshev, Friction-stir welding of an Al–Mg–Sc–Zr alloy in as-fabricated and work-hardened conditions, Mater. Sci. Eng., A. 600 (2014) 159-170.
DOI: 10.1016/j.msea.2014.02.018
Google Scholar
[13]
Y. Morisada, H. Fujii, T. Nagaoka, K. Nogi, M. Fukusumi, Fullerene/A5083 composites fabricated by material flow during friction stir processing, J. Composites: Part A. 38 (2007) 2097-2101.
DOI: 10.1016/j.compositesa.2007.07.004
Google Scholar
[14]
C.J. Lee, J.C. Huang, High Strain Rate Superplasticity of Mg Based Composites Fabricated by Friction Stir Processing, Mater. Trans. 47 (2006) 2773-2778.
DOI: 10.2320/matertrans.47.2773
Google Scholar
[15]
K. Sun, Q.Y. Shi, Y.J. Sun, G.Q. Chen, Microstructure and mechanical property of nano-SiCp reinforced high strength Mg bulk composites produced by friction stir processing, Mater. Sci. Eng. A. 547 (2012) 32-37.
DOI: 10.1016/j.msea.2012.03.071
Google Scholar
[16]
M. Dixit, J.W. Newkirk, R.S. Mishra, Properties of friction stir-processed Al 1100–NiTi composite, Scripta Mater. 56 (2007) 541-544.
DOI: 10.1016/j.scriptamat.2006.11.006
Google Scholar
[17]
D.R. Ni, J.J. Wang, Z.N. Zhou, Z.Y. Ma, Fabrication and mechanical properties of bulk NiTip/Al composites prepared by friction stir processing, J. Alloys Compd. 586 (2014) 368-374.
DOI: 10.1016/j.jallcom.2013.10.013
Google Scholar
[18]
Q. Liu, L. Ke, F. Liu, C. Huang, L. Xing, Microstructure and mechanical property of multi-walled carbon nanotubes reinforced aluminum matrix composites fabricated by friction stir processing, Mater. Des. 45 (2013) 343-348.
DOI: 10.1016/j.matdes.2012.08.036
Google Scholar
[19]
W. Wang, Q.-Y. Shi, P. Liu, H.-K. Li, T. Li, A novel way to produce bulk SiCp reinforced aluminum metal matrix composites by friction stir processing, J. Mater. Process. Technol. 209 (2009) 2099-2103.
DOI: 10.1016/j.jmatprotec.2008.05.001
Google Scholar
[20]
Z. Du, M.J. Tan, J.F. Guo, G. Bi, J. Wei, Fabrication of a new Al-Al2O3-CNTs composite using friction stir processing (FSP), Mater. Sci. Eng. A. 667 (2016) 125-131.
DOI: 10.1016/j.msea.2016.04.094
Google Scholar