Obtaining Biologically Active Polypropylene Fibrous Materials

Article Preview

Abstract:

The paper presents the results of the development of the technology of centrifugal-die forming of biologically active fibrous materials. The modification of biologically active polypropylene fibers was carried out directly at the process of their production in the field of centrifugal forces of rotating reactor during their molding from polypropylene melt. The properties of the obtained ion-exchange and biologically active polymer fibers are studied. It is shown that obtained and modified by the centrifugal-die method polypropylene fibers can be used as biologically active fibers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

764-769

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Blazej, L. Shutiy, Phenolic compounds of plant origin, Mir, Moscow, (1977).

Google Scholar

[2] S.B. Warner, Fiber Science. Englewood Chiffs, Prentice Hall, US, (1995).

Google Scholar

[3] W.E. Morton, J.W.S. Hearle, Physical Properties of Textile Fibres, The Textile Institute, Manchester, (1993).

Google Scholar

[4] F. Fourne, Synthetic Fibers. Carl Hanser Ferlag, Munchen, (1999).

Google Scholar

[5] V. Straus, Industrial gas purification, Chemistry, Moscow, (1981).

Google Scholar

[6] O.V. Galtseva, S.V. Bordunov, S.N. Torgaev, Highly-Effective Purification of Air on the Fibrous Filtering Nozzles, IOP Conf. Ser.: Mater. Sci. Eng. 110(1) (2016) 012094,.

DOI: 10.1088/1757-899x/110/1/012094

Google Scholar

[7] O.V. Galtseva, S.V. Bordunov, The Separation Process of Methane-Butane Fraction from Natural Gas before Transport, IOP Conf. Ser.: Mater. Sci. Eng. 81(1) (2015) 012062,.

DOI: 10.1088/1757-899x/81/1/012062

Google Scholar

[8] A.S. Sitnikov, V.V. Bordounov, V.S. Dmitriyev, G.N. Gladyshev, O.L. Vasiyeva, I.A. Sobolev, S.V. Bordounov, Domestic systems for air cleaning, Moistureing freeng of dust and bucterias, Proceeding of the 5th Korea-Russia International Symposium on Science and Technology KORUS. 2 (2001) 87-90.

DOI: 10.1109/korus.2001.975186

Google Scholar

[9] C. Justiger, M.R. Moussavian, O. Kollmar, Antibacterial prophylaxis ventral suture and wound infection, Surgery. 147(3) (2010) 464–465.

Google Scholar

[10] M. Tollar, M. K. Stol, K. Kliment, Surgical suture materials coated with a layer of hydrophilic Hydron, gel, J Biomed Mater Res. 3(2) (1969) 305–313.

DOI: 10.1002/jbm.820030210

Google Scholar

[11] L.A. Wolf (Ed.), Fibers with special properties, Chemistry, Moscow, (1980).

Google Scholar

[12] A.D. Virnik, Antimicrobial cellulosic fibrous materials, Results of science and technology, Chemistry and technology of high-molecular compounds, VINITI, Moscow, (1986).

Google Scholar

[13] A. Munoz-Bonilla, M. Fernandez-Garcia, Polymeric materials with antimicrobial activity, Progress in Polymer Science. (2011) 282-339.

Google Scholar

[14] T.N. Seregina, D.V. Filberg, Antimicrobial activity of drug-modified polypropylene yarns, Chemical fibers. 2 (1976) 68-69.

Google Scholar

[15] A.S. Sitnikov, V.V. Bordounov, V.S. Dmitriyev, G.N. Gladyshev, O.L. Vasiyeva, I.A. Sobolev, S.V. Bordounov, Ionselective Fibrous Materials on a basis of Waste Thermoplastics, Proceeding of the 5th Korea-Russia International Symposium on Science and Technology KORUS. 2 (2001) 200-202.

DOI: 10.1109/korus.2001.975227

Google Scholar

[16] V.V. Bordunov, S.V. Bordunov and I.A. Sobolev, RF Patent 2179600 (2002).

Google Scholar

[17] M.D. Sizova, V.P. Volkov, L.O. Bunina, Modified polyolefin binder with improved adhesion properties, synthesized in a solid phase. Plasticheskie Massy. 5 (1996) 7-12.

Google Scholar

[18] Ch. Shuquan, K. Bin, D. Yaodong, Sh.D. Chen, Synthesis of antimicrobial silver nanoparticles on silk fibers via γ-radiation, J Appl Polym Sci. (2009) 36-41.

Google Scholar

[19] M.A. Sarmadi, J.Y. Kang, Textile plasma treatment review – natural polymer-based textiles, ATCC Review. 4(10) (2004) 28-32.

Google Scholar

[20] M. Gorjanc, P. Recelj, M. Gorenšek, Plasma Technology for Textile Purposes, Tekstilec. 50(10-12) (2007) 262-266.

Google Scholar

[21] A. Fridman, Plasma chemistry, Cambridge University Press, New York, (2008).

Google Scholar

[22] N. Prorokova, A. Chorev, S. Kuzmin, S. Vavilova,V. Prorokov, Chemical Method of Fibrous Materials Surface Activation on the Basis of Polyethilene Terephthalate (PET), Chemistry & Chemical Technology. 8(3) (2014) 293 – 302.

DOI: 10.23939/chcht08.03.293

Google Scholar

[23] S.M. Kuzmin, N.P. Prorokova, A.V. Khorev, Plasma-Assisted Modification of Textile Yarns in Liquid Environment. In: A. El. Nemr (Ed) Textiles: Types, Uses and Production Methoda, Nova Science Publishers, Inc., New York. (2012) 557 – 578.

Google Scholar

[24] N. I. Tchernyshev, O. E. Sysoev, D. B. Solovev, E. P. Kiselyov, Basic Robotecnical Platform for Implementation of Accurate Farming Technologies. Bulletin of Electrical Engineering and Informatics (BEEI). 7(4) (2018) 522-528. [Online]. Available: http://dx.doi.org/10.11591/eei.v7i4.920.

DOI: 10.11591/eei.v7i4.920

Google Scholar