Assessment of Applicability of the MPF-4 Magnesium Powder for Manufacturing Parts Using 3D Printing Technologies

Article Preview

Abstract:

The article provides study results for two samples manufactured with the MPF-4 magnesium powder by means of directed laser energy and material deposition. The authors studied microhardness and microstructure of the samples by means of optical and electronic microscopic techniques; provided results of the impact of annealing on microstructure and microhardness of the samples; and assessed the possibility of using the MPF-4 powder for manufacturing parts using 3D printing technologies.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

780-784

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Arrabal, E. Matykina, F. Viejo, P. Skeldon, G.E. Thompson, Corrosion resistance of WE43 and AZ91D magnesium alloys with phosphate PEO coating, Corros, Sci. 50 (2008) 1744-1752.

DOI: 10.1016/j.corsci.2008.03.002

Google Scholar

[2] A.L. Yerokhin, A. Shatrov, V. Samsonov, P. Shashkov, A. Pilkington, A. Leyland, A. Matthews, Oxide ceramic coatings on aluminum alloys produced by a pulsed bipolar plasma electrolytic oxidation process, Surtace & Coatings T'echnology. 199 (2005) 150-15.

DOI: 10.1016/j.surfcoat.2004.10.147

Google Scholar

[3] A.S. Gnedenkov, S.L. Sinebryukhov, D.V. Mashtalyar, S.V. Gnedenkov, Features of the corrosion processes development at the magnesium alloys surface, Surface & Coatings Technology. 225, 14-15 (2013) 112-118.

DOI: 10.1016/j.surfcoat.2013.03.023

Google Scholar

[4] Yu.M. Vernigorov, Yu.A. Gordin, G.A. Dreev, The dependence of the properties of powder mixtures on the method of mixing, Thes. doc. UE All-Union. scientific and technical conf., Hot pressing in powder metallurgy,, Novocherkassk, 1998, 102-104.

Google Scholar

[5] I.N. Egorov, Development of magnetic vibration technology for grinding powders of magnetic materials, providing a given particle size distribution: Abstract. dis. Cand. tech. Sciences: 05.16.06, Novocherkassk, 2007, 19 p.

Google Scholar

[6] E.G. Avvakumov, V.M. Bereznyak, Universal planetary mill and its capabilities for producing highly dispersed powders, Materials of the interregional conference .: Krasnoyarsk, 1996, 203-204.

Google Scholar

[7] V.S. Rakovsky, A.F. Silaev, V.I. Khodkin, O.X. Fatkullin, Powder metallurgy of heat-resistant alloys and refractory metals: Monograph, M .: Metallurgy, 1974, 184 p.

Google Scholar

[8] I. Chang, Y. Zhao, Advances in powder metallurgy: Properties, processing and applications, Woodhead Publishing Limited, 2013. XXI, 604 p., ISBN 978-0-85709-420-9 (print).

Google Scholar

[9] P. Ramakrishnan (ed.), Powder metallurgy and high-temperature materials: Per. from English Chelyabinsk: Metallurgy, 1990, 352 p.

Google Scholar

[10] C.Ng. Chung, M. Savalani, H.C. Man, Fabrication of magnesium using selective laser melting technique, Rapid Prototyping, J. 17(6) (2011) 479-490.

DOI: 10.1108/13552541111184206

Google Scholar

[11] V. Manakari, G. Parande, M. Gupta, Selective Laser Melting of Magnesium and Magnesium Alloy Powders, Metals. 7(1) (2016) 1-35.

DOI: 10.3390/met7010002

Google Scholar

[12] M.M. Savalani, J.M. Pizarro, R.I. Campbell, I. Gibson, Effect of preheat and layer thickness on selective laser melting (SLM) of magnesium, Rapid Prototyping Journal. 22 (2016) 115-122.

DOI: 10.1108/rpj-07-2013-0076

Google Scholar

[13] A.G. Grigoryants, I.N. Shiganov, A.I. Misyurov, Technological processes of laser processing, M: MSTU named after N.E. Bauman, 2008, 664 p.

Google Scholar

[14] Chemical Encyclopedia: In 5 vols .: - T. 2: Duffa – Copper, Ch. ed. I.L. Knunyants, M., Soviet Encyclopedia, 1990, 671 p.: Ill.

Google Scholar

[15] I.N. Frantsevich, N.D. Radomyselsky et al, Powder metallurgy: Materials, technology, properties, applications: Handbook, Repl. ed. Fedorchenko, Kiev: Science, Dumka, 1985, 624 p.

Google Scholar

[16] I.D. Radomyselsky, S.G. Napara-Volgina, Obtaining doped powders by diffusion method and their use, K .: Naukova Dumka, 1988, 136 p.

Google Scholar

[17] F.G. Lovshenko, G.F. Lovshenko, Composite nanostructured mechanically alloyed powders for thermal spray coatings: Monograph, Mogilev: Belarusian-Russian University, 2013, 215 p.

DOI: 10.53078/20778481_2013_2_71

Google Scholar

[18] T.V. Burdikova, I.Sh. Abdullin, M.F. Shaekhov, O.V. Evsyukova, Yu.V. Vinokurov, Effect of modification of iron powders and materials based on them on corrosion resistance in aggressive environments, Bulletin of Kazan Technological University, 2004, 2. URL: https://cyberleninka.ru/article/n/vliyanie-modifikatsii-poroshkov-zheleza-i-materialov- na-ih-osnove-na-korrozionnuyu-stoykost-v-agressivnyh-sredah.

Google Scholar

[19] A.I. Rodionov, I.Yu. Efimochkin, A.A. Buyakina, M.N. Letnikov, Spheroidization of metal powders (review), Aviation materials and technologies. S1(43) (2016), URL: https://cyberleninka.ru/article/n/sferoidizatsiya-metallicheskih-poroshkov-obzor.

Google Scholar

[20] Yu.V. Kuzmich, I.G. Kolesnikova, V.I. Serba, B.M. Freidin, Mechanical alloying, Apatity: Publishing House of the Kola Scientific Center of the Russian Academy of Sciences, 2004, 179 p.

Google Scholar