[1]
X. Zhao, P.A. Sobecky, L. Zhao, P. Crawford, M. Li, Chromium(VI) transport and fate in unsaturated zone and aquifer: 3D Sandbox results. Journal of Hazardous Materials, 306 (2016), 203-209.
DOI: 10.1016/j.jhazmat.2015.12.004
Google Scholar
[2]
K. Saravanakumar, M. Velluchamy, V. Sethumathavan, Constructing a novel Ag nanoparticle anchored on MnO2 nanowires as an efficient visible light driven photocatalyst. Journal of Royal Society of Chemistry Advances, 6 (2016), 61357-61366.
DOI: 10.1039/c6ra10444d
Google Scholar
[3]
J. Fang, Z. Gu, D. Gang, C. Liu, E. Ilton, B. Deng, Cr(VI) Removal from Aqueous Solution by Activated Carbon Coated with Quaternized Poly(4-vinylpyridine). Journal of Environmental Science and Technology, 41 (2007), 13, 4748-4753.
DOI: 10.1021/es061969b
Google Scholar
[4]
B.J. Borah, H. Saikia, P. Bharali, Reductive conversion of Cr(vi) to Cr(iii) over bimetallic CuNi nanocrystals at room temperature. New Journal of Chemistry, 38 (2014), 2748-2751.
DOI: 10.1039/c4nj00150h
Google Scholar
[5]
S. Mortazavian, A. Saber, J. Hong, J.-H. Bae, D. Chun, N. Wong, D. Gerrity, J. Batista, K.J. Kim, J. Moon, Synthesis, characterization, and kinetic study of activated carbon modified by polysulfide rubber coating for aqueous hexavalent chromium removal. Journal of Industrial and Engineering Chemistry, 69 (2019), 196-210.
DOI: 10.1016/j.jiec.2018.09.028
Google Scholar
[6]
Y. Wu, J. Zhang, Y. Tong, X. Xu, Chromium (VI) reduction in aqueous solutions by Fe3O4-stabilized Fe0 nanoparticles, Journal of Hazardous Materials, 172 (2009), 1640-1645.
DOI: 10.1016/j.jhazmat.2009.08.045
Google Scholar
[7]
Y.-S. Shen, S.-L. Wang, S.-T. Huang, Y.-M. Tzou, J.-H. Huang, Biosorption of Cr(VI) by coconut coir: Spectroscopic investigation on the reaction mechanism of Cr(VI) with lignocellulosic material. Journal of Hazardous Materials, 179 (2010), 160-165.
DOI: 10.1016/j.jhazmat.2010.02.073
Google Scholar
[8]
L.-H. Wang, C.-I. Lin, Adsorption of chromium (III) ion from aqueous solution using rice hull ash. Journal of the Chinese Institute of Chemical Engineers, 39 (2008), 367-373.
DOI: 10.1016/j.jcice.2008.02.004
Google Scholar
[9]
A. Verma, R. Dua, A. Singh, N.R. Bishnoi, Biogenic sulfides for sequestration of Cr (VI), COD and sulfate from synthetic wastewater. Water Science, 29 (2015), 19-25.
DOI: 10.1016/j.wsj.2015.03.001
Google Scholar
[10]
S. Rengaraj, C.K. Joo, Y. Kim, J.J.J.o.H.M. Yi, Kinetics of removal of chromium from water and electronic process wastewater by ion exchange resins: 1200H, 1500H and IRN97H. Journal of Hazardous Materials, 102 (2003), 257-275.
DOI: 10.1016/s0304-3894(03)00209-7
Google Scholar
[11]
R. Aravindhan, B. Madhan, J.R. Rao, B.U.N. And, T.J.E.S. Ramasami, Technology, Bioaccumulation of Chromium from Tannery Wastewater: An Approach for Chrome Recovery and Reuse. Journal of Environmental Science and Technology, 38 (2004), 300.
DOI: 10.1021/es034427s
Google Scholar
[12]
R. Hao, G. Wang, H. Tang, L. Sun, C. Xu, D. Han, Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity, Applied Catalysis B: Environmental, 187 (2016), 47-58.
DOI: 10.1016/j.apcatb.2016.01.026
Google Scholar
[13]
J.H. Park, F. Raza, S.J. Jeon, D.B. Yim, H.I. Kim, T.W. Kang, J.H.J.J.o.M.C.A. Kim, Oxygen-mediated formation of MoSx-doped hollow carbon dots for visible light-driven photocatalysis. Journal of Materials Chemistry, 4 (2016), 14796-14803.
DOI: 10.1039/c6ta04278c
Google Scholar
[14]
J. Li, Y. Yu, L.J.N. Zhang, Bismuth oxyhalide nanomaterials: layered structures meet photocatalysis. Nanoscale, 6 (2014), 8473.
DOI: 10.1039/c4nr02553a
Google Scholar
[15]
S.C. Yan, Z.S. Li, Z.G.J.L. Zou, Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir, 25 (2009), 10397-10401.
DOI: 10.1021/la900923z
Google Scholar
[16]
S. Zhao, S. Chen, H. Yu, X.J.S. Quan, P. Technology, g-C3N4/TiO2 hybrid photocatalyst with wide absorption wavelength range and effective photogenerated charge separation. Journal of Separation and Purification Technology, 99 (2012), 50-54.
DOI: 10.1016/j.seppur.2012.08.024
Google Scholar
[17]
H.S. Zhai, L. Cao, X.H.J.C.C.L. Xia, Synthesis of graphitic carbon nitride through pyrolysis of melamine and its electrocatalysis for oxygen reduction reaction. Chinese Chemical Letters , 24 (2013), 103-106.
DOI: 10.1016/j.cclet.2013.01.030
Google Scholar
[18]
J. Xu, K. Shen, B. Xue, Y.X.J.J.o.M.C.A.C. Li, Microporous carbon nitride as an effective solid base catalyst for Knoevenagel condensation reactions. Journal of Molecular Catalysis A: Chemical, 372 (2013), 105-113.
DOI: 10.1016/j.molcata.2013.02.019
Google Scholar
[19]
L. Fang, H. Ohfuji, T. Shinmei, T.J.D. Irifune, R. Materials, Experimental study on the stability of graphitic C3N4 under high pressure and high temperature. Diamond and Related Materials, 20 (2011), 819-825.
DOI: 10.1016/j.diamond.2011.03.034
Google Scholar
[20]
M. Sprynskyy, I. Kovalchuk, B.J.J.o.H.M. Buszewski, The separation of uranium ions by natural and modified diatomite from aqueous solution. Journal of Hazardous Materials, 181 (2010), 700-707.
DOI: 10.1016/j.jhazmat.2010.05.069
Google Scholar
[21]
W. Yu, Y. Peng, L. Dong, L. Deng, W. Yuan, T. Bo, H. Cheng, F.J.C.E.J. Chen, Facile preparation of hierarchically porous diatomite/MFI-type zeolite composites and their performance of benzene adsorption: The effects of NaOH etching pretreatment. Journal of Hazardous Materials, 270 (2015), 173-181.
DOI: 10.1016/j.jhazmat.2014.11.034
Google Scholar
[22]
Y. Du, H. Fan, L. Wang, J. Wang, J. Wu, H.J.J.o.M.C.A. Dai, α-Fe2O3 nanowires deposited diatomite: highly efficient absorbents for the removal of arsenic. Journal of Materials Chemistry A, 1 (2013), 7729-7737.
DOI: 10.1039/c3ta11124e
Google Scholar
[23]
N. Tian, H. Huang, Y. Zhang, Mixed-calcination synthesis of CdWO4/g-C3N4 heterojunction with enhanced visible-light-driven photocatalytic activity. Applied Surface Science, 358 (2015), 343-349.
DOI: 10.1016/j.apsusc.2015.07.154
Google Scholar
[24]
W. Huang, N. Liu, X. Zhang, M. Wu, L. Tang, Metal organic framework g-C3N4/MIL-53(Fe) heterojunctions with enhanced photocatalytic activity for Cr(VI) reduction under visible light. Applied Surface Science, 425 (2017), 107-116.
DOI: 10.1016/j.apsusc.2017.07.050
Google Scholar
[25]
T. Xu, L. Zhang, H. Cheng, Y. Zhu, Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Applied Catalysis B: Environmental, 101 (2011), 382-387.
DOI: 10.1016/j.apcatb.2010.10.007
Google Scholar
[26]
H. Wei, Q. Zhang, Y. Zhang, Z. Yang, A. Zhu, D.D. Dionysiou, Enhancement of the Cr(VI) adsorption and photocatalytic reduction activity of g-C3N4 by hydrothermal treatment in HNO3 aqueous solution. Applied Catalysis A: General, 521 (2016), 9-18.
DOI: 10.1016/j.apcata.2015.11.005
Google Scholar
[27]
M. Abu Tahari, A. Yarmo, Adsorption of CO2 on silica dioxide catalyst impregnated with various alkylamine. AIP Conference Proceedings, 1614 (2014), 1, 334-341.
DOI: 10.1063/1.4895218
Google Scholar
[28]
M.A. Mahmoud, Adsorption of U (VI) ions from aqueous solution using silicon dioxide nanopowder. Journal of Saudi Chemical Society, 22 (2018), 229-238.
DOI: 10.1016/j.jscs.2016.04.001
Google Scholar
[29]
M. Mousavi, A. Habibi-Yangjeh, D. Seifzadeh, Novel ternary g-C3N4/Fe3O4/MnWO4 nanocomposites: Synthesis, characterization, and visible-light photocatalytic performance for environmental purposes. Journal of Materials Science & Technology, 34 (2018), 1638-1651.
DOI: 10.1016/j.jmst.2018.05.004
Google Scholar
[30]
T. Takei, M. Yoshida, K. Yanagi, Y. Hatate, K. Shiomori, S. Kiyoyama, Preparation of acetamiprid-loaded polymeric microcapsules: Influence of preparation parameter in emulsion system on microcapsule characteristics. Polymer Bulletin, 61 (2008), 1, 119-127.
DOI: 10.1007/s00289-008-0935-5
Google Scholar
[31]
W. Jiang, W. Luo, J. Wang, M. Zhang, Y. Zhu, Enhancement of catalytic activity and oxidative ability for graphitic carbon nitride. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 28 (2016), 87-115.
DOI: 10.1016/j.jphotochemrev.2016.06.001
Google Scholar
[32]
X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, Y.J.J.o.t.A.C.S. Xie, Enhanced Photoresponsive Ultrathin Graphitic-Phase C3N4 Nanosheets for Bioimaging. Journal of American Chemical Society, 135 (2013), 18-21.
DOI: 10.1021/ja308249k
Google Scholar
[33]
S. Fang, Y. Xia, K. Lv, Q. Li, J. Sun, M. Li, Effect of carbon-dots modification on the structure and photocatalytic activity of g-C3N4. Applied Catalysis B: Environmental, 185 (2016), 225-232.
DOI: 10.1016/j.apcatb.2015.12.025
Google Scholar
[34]
R. Zheng, Z. Ren, H. Gao, A. Zhang, Z. Bian, Effects of calcination on silica phase transition in diatomite. Journal of Alloys and Compounds, 757 (2018), 364-371.
DOI: 10.1016/j.jallcom.2018.05.010
Google Scholar
[35]
Y. Sun, H. Cheng, S. Gao, Z. Sun, Q. Liu, Q. Liu, F. Lei, T. Yao, J. He, S. Wei, Y. Xie, Freestanding Tin Disulfide Single-Layers Realizing Efficient Visible-Light Water Splitting. Angewandte Chemie International Edition, 51 (2012), 8727-8731.
DOI: 10.1002/anie.201204675
Google Scholar
[36]
Y. Huang, X. Ma, G. Liang, Y. Yan, S. Wang, Adsorption behavior of Cr(VI) on organic-modified rectorite. Chemical Engineering Journal, 138 (2008), 187-193.
DOI: 10.1016/j.cej.2007.06.017
Google Scholar
[37]
K. Schuegraf, C. hu, Effects of Temperature and Defects on Breakdown Lifetime of Thin SiO2 at Very Low Voltages, IEEE Transactions on Electron Devices, 41 (1994), 7, 1227-1232.
DOI: 10.1109/16.293352
Google Scholar
[38]
Y. Xu, L. Zhang, M. Yin, D. Xie, J. Chen, J. Yin, Y. Fu, P. Zhao, H. Zhong, Y. Zhao, X. Wang, Ultrathin g-C3N4 films supported on Attapulgite nanofibers with enhanced photocatalytic performance. Journal of Applied Surface Science, 440 (2018), 170-176.
DOI: 10.1016/j.apsusc.2018.01.127
Google Scholar