[1]
T. Kaldeus, M.R.T. Leggieri, G.G. Sanchez and E. Malmstrom, All-aqueous SI-ARGET ATRP from cellulose nanofibrils using hydrophilic and hydrophobic monomers, Biomacromolecules. 20 (2019) 1937-1943.
DOI: 10.1021/acs.biomac.9b00153
Google Scholar
[2]
M. Wang, J. Yuan, Grafting of carboxybetaine brush onto cellulose membranes via surface-initiated ARGET-ATRP for improving blood compatibility, Colloids Surf., B. 103 (2013) 52-58.
DOI: 10.1016/j.colsurfb.2012.10.025
Google Scholar
[3]
M.L Guo, Y.P. Wu, Surface modification of boron nitride nanosheets with polycationic electrolytes through ARGET ATRP for enhancing mechanical properties of cellulose film, Mater. Lett. 242 (2019) 127-130.
DOI: 10.1016/j.matlet.2019.01.123
Google Scholar
[4]
W.B. Wu, J. Li, Thermo-responsive cellulose paper via ARGET ATRP, Fibers Polym. 17 (2016) 495-501.
DOI: 10.1007/s12221-016-5877-1
Google Scholar
[5]
Y. X. Wang, L. N. Zhang, Recent Developments of Materials in Natural Polymers. Chin. Polym. Bull. 7 (2008) 66-76.
Google Scholar
[6]
N. Chan, M. F. Cunningham, R. A. Hutchinson, ARGET ATRP of methacrylates and acrylates with stoichiometric ratios of ligand to copper, Macromol. Chem. Phy. 09 (2008) 1797–1805.
DOI: 10.1002/macp.200800328
Google Scholar
[7]
W.A. Braunecker, K. Matyjaszewski, Controlled/living radical polymerization: Features, developments, and perspectives, Prog. Polym. Sci. 32 (2007) 93-146.
DOI: 10.1016/j.progpolymsci.2007.10.001
Google Scholar
[8]
S. Hansson, E. Ostmark and A. Carlmark, ARGET ATRP for Versatile Grafting of Cellulose Using Various Monomers, ACS Appl. Mater. Interfaces. 1 (2009) 2651-2659.
DOI: 10.1021/am900547g
Google Scholar
[9]
Y.M. Li, Q. Li, Intelligent self-healing superhydrophobic modification of cotton filter cloths via surface-initiated ARGET ATRP of styrene, Chem. Eng. J. 323 (2017) 134-142.
DOI: 10.1016/j.cej.2017.04.080
Google Scholar
[10]
L.Y Zhao, Z.H. Xia and W.B. Wu, Cellulose nanocrystals graft with PDEGMA through surface ARGET ATRP, J. Cellul. Sci. Technol. 25 (2017) 10-15.
Google Scholar
[11]
G. Li, H.P. Yu and Y.X. Liu, Hydrophobic modification of natural cellulose fiber with MMA via surface-initiated ARGET ATRP, Adv. Mater. Res. 221 (2011) 90-94.
DOI: 10.4028/www.scientific.net/amr.221.90
Google Scholar
[12]
Y.C. Fu, G. Li, H.P. Yu and Y.X. Liu, Hydrophobic modification of wood via surface-initiated ARGET ATRP of MMA, Appl. Surf. Sci. 258 (2012) 2529-2533.
DOI: 10.1016/j.apsusc.2011.10.087
Google Scholar
[13]
Z.L. Zhuang, W.B. Wu, pH-Responsive cellulose papers prepared via ARGET ATRP grafting of poly(2-(dimethylamino)ethyl methacrylate), Acta Polym. Sin. 10 (2015) 1151-1157.
Google Scholar
[14]
D. Klemm, B. Heublein, Cellulose: Fascinating biopolymer and sustainable raw material, Angew. Chem., Int. Ed. 44 (2005) 3358-3393.
DOI: 10.1002/anie.200460587
Google Scholar
[15]
A.K. Bledzki, J. Gassan, Composites reinforced with cellulose based fibres, Prog. Polym. Sci. 24 (1999) 221-274.
Google Scholar
[16]
G. Morandi, L. Heath, W. Thielemans, Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP), Langmuir. 25 (2009) 8280-8286.
DOI: 10.1021/la900452a
Google Scholar
[17]
W. Jakubowski, K. Min, K. Matyjaszewski, Activators regenerated by electron transfer for atom transfer radical polymerization of styrene, Macromolecules. 39 (2006) 39-45.
DOI: 10.1021/ma0522716
Google Scholar
[18]
Z.L. Yang, G.N. Wu and Q. Mei, Study on the manufacture of rayon fiber from a PF/DMSO solvent system, Cellul. Chem. Techn. 21 (1987) 493-505.
Google Scholar
[19]
Z. Xing, J.Z. Chen, Advance in the systems of natural cellulose solvent, Paper and Paper making. 28 (2009) 26-31.
Google Scholar
[20]
J. Cai, L. N. Zhang, Rapid dissolution of cellulose in LiOH/Urea and NaOH/Urea aqueous solutions, Macromol. Biosci. 5 (2005) 539-548.
DOI: 10.1002/mabi.200400222
Google Scholar
[21]
R.A. Gross, B. Kalra, Biodegradable polymers for the environment, Science, 297 (2002) 803-807.
Google Scholar
[22]
Z.G. Liu, Y. Gao, H. Jin and S.H. Yu, Study on natural cellulose crystallinity determinated by the technology of XRD peak separation, China Meas. Test. 41 (2015) 38-41.
Google Scholar
[23]
G. Rojith, S.I. Bright, Cellulose crystallinity change assessment of biochar produced by pyrolysis of coir pith, Res. J. Recent Sci. 2 (2012) 1-6.
Google Scholar
[24]
P.k. Gupta, U. Vanshi and Naithani. Polymorphic transformation of cellulose I to cellulose II by alkali pretreatment and urea as an additive. Carbohydr. Polym. 94 (2013) 843-849.
DOI: 10.1016/j.carbpol.2013.02.012
Google Scholar
[25]
P. Sunkyu, O.B. John and E.H. Michael, Cellulose crystallinity index: measurement techniques and theirimpact on interpreting cellulase performance. Biotechnol. Biofuels, 3 (2010) 1-10.
Google Scholar
[26]
E.W. Leng, X. Gong, Y. Zhang and X.H. Xu, Progress of cellulose pyrolysis mechanism: cellulose evolution based on intermediate cellulose, CIESC Journal, 69 (2018) 239-248.
Google Scholar
[27]
W.Y. Wang, Y.Y. Yu, Controlled graft polymerization on the surface of filter paper via enzyme-initiated RAFT polymerization, Carbohydr. Polym.207 (2019) 239-245.
DOI: 10.1016/j.carbpol.2018.11.095
Google Scholar