One-Step Hydrothermal Synthesis of 1T@2H MoS2 for Enhanced Photocatalytic Degradation Performance of Methyl Blue

Article Preview

Abstract:

Photocatalytic technology is widely used in water purification because of its environmental protection, high efficiency and energy saving. Therefore, it is extremely important for the selection and preparation of specific semiconductor materials used in the field of photocatalysis. In this work, 1T@2H MoS2 nanosheets were fabricated by simple hydrothermal method, and the photocatalytic property of as-prepared 1T@2H MoS2 were investigated by the photo-degradation of methylene blue (MB) water solutions under visible light irradiation via 2H MoS2.The results indicated that compared to 2H MoS2, the 1T@2H MoS2 exhibited more excellent photocatalytic degradation property. After 150 minutes of irradiation under visible light, 1T@2H MoS2 had a removal rate of 98% for MB, and 2H MoS2 eventually reached 19%. The enhancement photocatalytic property of 1T@2H MoS2 could be attributed to the reduced band gap energy of the hybrid-nanosheets and the increased in electron migration speed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1496-1501

Citation:

Online since:

May 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Q.L. Ma, Y.F. Yu, M. Sindoro, A.G. Fane, R. Wang, H. Zhang, Carbon‐Based Functional Materials Derived from Waste for Water Remediation and Energy Storage, Adv. Mater. 29 (2017)1605361–1605379.

DOI: 10.1002/adma.201605361

Google Scholar

[2] M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas, A.M. Mayes, Science and technology for water purification in the coming decades, Nature. 452 (2008) 301–310.

DOI: 10.1038/nature06599

Google Scholar

[3] J. Tian, Y.H. Leng, Z.H. Zhao, Y. Xia, Y.H. Sang, P. Hao, J. Zhan, M.C. Li, H. Liu, Carbon quantum dots/hydrogenated TiO2 nanobelt heterostructures and their broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation, Nano Energy. 11 (2015) 419–427.

DOI: 10.1016/j.nanoen.2014.10.025

Google Scholar

[4] S.A. Mozaffari, M. Ranjbar, E. Kouhestanian, H.S. Amoli, M.H. Armanmehr, An investigation on the effect of electrodeposited nanostructured ZnO on the electron transfer process efficiency of TiO2based DSSC, Mater. Sci. Semicond. Process. 40 (2015) 285-292.

DOI: 10.1016/j.mssp.2015.06.081

Google Scholar

[5] M.Y. Guo, M.K. Fung, F. Fang, X.Y. Chen, A.M.C. Ng, A.B. Djuriˇsi´c, W.K. Chan, ZnO and TiO2 1D nanostructures for photocatalytic applications, J. Alloys Compd. 509 (2011) 1328-1332.

DOI: 10.1016/j.jallcom.2010.10.028

Google Scholar

[6] M. J. Torralvo, J. Sanz, I. Sobrados, J. Soria, C. Garlisi, G. Palmisano, S. Cetinkaya, S. yurdakal, V. Augugliaro, Anatase photocatalyst with supported low crystalline TiO2: The influence of amorphous phase on the activity, Appl. Catal. B: Environ. 221(2018) 140-151.

DOI: 10.1016/j.apcatb.2017.08.089

Google Scholar

[7] M. Yeganeh, N. Shahtahmasebi, A. Kompany, The magnetic characterization of Fe doped TiO2 semiconducting oxide nanoparticles synthesized by sol–gel method. Phys. B. 511(2017) 89-98.

DOI: 10.1016/j.physb.2017.02.010

Google Scholar

[8] K. C. Sung, P. Chang, Fabrication and enhanced photocatalytic property of TiO2-ZnO composite photocatalysts, Mater. Lett. 30(2018) 58-52.

Google Scholar

[9] M. Acerce, D. Voiry, M. Chhowalla, Metallic 1T phase MoS2 Nanosheets as Supercapacitor Electrode Materials, Nat. Nano technol. 10(2015)313-318.

DOI: 10.1038/nnano.2015.40

Google Scholar

[10] C. L. He, J. Liu, Q. Yao, T. Chen, L. Yan, W. Hu, F. Jiang, Y. Zhao, Y. Hu, T. Sun, Z. Wei, Vacancy-Induced Ferromagnetism of MoS2 Nanosheets, J. Am. Chem. Soc. 137(2015)2622-2627.

DOI: 10.1021/ja5120908

Google Scholar

[11] S. S. Chou, Y. K. Huang, J. Kim, B. Kaehr, B. M. Foley, P. Lu, C. Dykstra, P. E. Hopkins, C. J. Brinker, J. Huang, V. P. Dravid, Controlling the Metal to Semiconductor Transition of MoS2 and WS2 in Solution, J. Am. Chem. Soc. 137(2015)1742-1745.

DOI: 10.1021/ja5107145

Google Scholar

[12] L. Wang, Z. Xu, W. Wang, X. Bai, Atomic Mechanism of Dynamic Electrochemical Lithiation Processes of MoS2 Nanosheets, J. Am. Chem. Soc. 136(2014)6693-6697.

DOI: 10.1021/ja501686w

Google Scholar

[13] D.P. Wu, X.L. Wang, H.J. Wang, F.J. Wang, D.Q. Wang, Z.Y. Gao, X.J. Wang, F. Xu, K. Jiang, Ultrasonic-assisted synthesis of two dimensional BiOCl/MoS2 with tunable band gap and fast charge separation for enhanced photocatalytic performance under visible light, J. Colloid Interface Sci. 533 (2019) 539–547.

DOI: 10.1016/j.jcis.2018.08.084

Google Scholar

[14] L. Chen, J. He, Q. Yuan, S.F. Yin, Environmentally benign synthesis of branched Bi2O3–Bi2S3 photocatalysts by an etching and re-growth method, J Mater Chem A. 3(2014) 1096-1102.

Google Scholar

[15] Y. Yin, J. Han, Y. Zhang, Z. Zhang, Contributions of Phase, Sulfur Vacancies, and Edges to the Hydrogen Evolution Reaction Catalytic Activity of Porous Molybdenum Disulfide Nanosheets, J Am Chem Soc. 138 (2016) 7965-7972.

DOI: 10.1021/jacs.6b03714

Google Scholar