[1]
Marques DV, Barcelos RL, Silva HRT, et al. Recycled polyethylene terephthalate-based boards for thermal-acoustic insulation. J. Clean. Prod. 189 (2018) 251-262.
DOI: 10.1016/j.jclepro.2018.04.069
Google Scholar
[2]
Li M, Luo J, Huang Y, et al. Recycling of waste poly(ethylene terephthalate) into flame-retardant rigid polyurethane foams. J. Appl. Polym. Sci. 131 (2014) 5829-5836.
DOI: 10.1002/app.40857
Google Scholar
[3]
Coelho TM, Castro R, Gobbo JA. PET containers in Brazil: Opportunities and challenges of a logistics model for post-consumer waste recycling. Resour. Conserv. Recy. 55 (2011) 291-299.
DOI: 10.1016/j.resconrec.2010.10.010
Google Scholar
[4]
Koshti R, Mehta L, Samarth N. Biological recycling of polyethylene terephthalate: A mini-review. J. Polym. Eeniron. 26 (2018) 3520-3529.
DOI: 10.1007/s10924-018-1214-7
Google Scholar
[5]
Ütebay B, Çelik P, Çay A. Effects of cotton textile waste properties on recycled fibre quality. J. Clean. Prod. 222 (2019) 29-35.
DOI: 10.1016/j.jclepro.2019.03.033
Google Scholar
[6]
Koch K, Domina T. Consumer Textile Recycling as a Means of Solid Waste Reduction. Family & Consumer Sciences Research Journal. 28 (2010) 3-17.
DOI: 10.1177/1077727x99281001
Google Scholar
[7]
Leśniewska E. Influence of production progress on the heavy metal content in flax fibers. Chem. Pap. 63 (2009) 37-542.
Google Scholar
[8]
Kiyataka PHM, Dantas ST, Albino AC, et al. Antimony Assessment in PET Bottles for Soft Drink. Food Anal. Method. 11 (2018) 1-9.
DOI: 10.1007/s12161-017-0951-x
Google Scholar
[9]
Rovira J, Nadal, Martí, Schuhmacher M, et al. Home textile as a potential pathway for dermal exposure to trace elements: assessment of health risks. J. Text. I. (2017) 1-9.
DOI: 10.1080/00405000.2017.1302635
Google Scholar
[10]
Duh B. Effect of antimony catalyst on solid-state polycondensation of poly (ethylene terephthalate). Polymer. 43 (2002) 3147-3154.
DOI: 10.1016/s0032-3861(02)00138-6
Google Scholar
[11]
Cheng X, Shi H, Adams CD, et al. Assessment of metal contaminations leaching out from recycling plastic bottles upon treatments. Environ. Sci. Pollut. R. 17 (2010) 1323-1330.
DOI: 10.1007/s11356-010-0312-4
Google Scholar
[12]
Rungchang S, Numthuam S, Qiu X, et al. Diffusion coefficient of antimony leaching from polyethylene terephthalate bottles into beverage. J. Food Eng. 115 (2013) 322-329.
DOI: 10.1016/j.jfoodeng.2012.10.025
Google Scholar
[13]
Sax L. Polyethylene terephthalate may yield endocrine disruptors. Environ. Health. Persp. 118 (2009) 445-448.
DOI: 10.1289/ehp.0901253
Google Scholar
[14]
Carneado S, Hernández-Nataren E, López-Sánchez JF, et al. Migration of antimony from polyethylene terephthalate used in mineral water bottles. Food Chem. 166 (2015) 544-550.
DOI: 10.1016/j.foodchem.2014.06.041
Google Scholar
[15]
Welle F, Franz R. Migration of antimony from PET bottles into beverages: determination of the activation energy of diffusion and migration modelling compared with literature data. Food Addit. Contam. A. 28 (2011) 115-126.
DOI: 10.1080/19440049.2010.530296
Google Scholar
[16]
Bach C, Dauchy X, Chagnon M C, et al. Chemical compounds and toxicological assessments of drinking water stored in polyethylene terephthalate (PET) bottles: A source of controversy reviewed. J. Cheminformatics. 46 (2012) 571-583.
DOI: 10.1016/j.watres.2011.11.062
Google Scholar
[17]
Carneado S, Hernándeznataren E, Lópezsánchez JF, et al. Migration of antimony from polyethylene terephthalate used in mineral water bottles. Food Chem. 166 (2015) 544-550.
DOI: 10.1016/j.foodchem.2014.06.041
Google Scholar
[18]
Rovira J, Nadal M, Schuhmacher M, et al. Human exposure to trace elements through the skin by direct contact with clothing: Risk assessment. Environ. Res. 140 (2015) 308-316.
DOI: 10.1016/j.envres.2015.03.032
Google Scholar
[19]
Rovira J, Nadal M, Schuhmacher M, et al. Trace elements in skin-contact clothes and migration to artificial sweat: Risk assessment of human dermal exposure. Text. Res. J. 87 (2017) 726–738.
DOI: 10.1177/0040517516639816
Google Scholar
[20]
USEPA. water related fate of the 129 priority pollutants. Vol.1. USEPA, Washington DC, USA. (1979).
Google Scholar
[21]
Directive C. Council Directive 76/464/EEC of 4 May 1976 on pollution caused by certain dangerous substances discharged into the aquatic environment of the Community. Official journal L. 129 (1976) 23-29.
Google Scholar
[22]
GB/T 17593.2-2007 Textiles-Determination of heavy metals-Part 2: Inductively coupled plasma atomic emission spectrometry. Beijing: China Standard Press. (2007).
Google Scholar
[23]
Rezić I, Steffan I. ICP-OES determination of metals present in textile materials. Microchem. J. 85 (2007) 46-51.
DOI: 10.1016/j.microc.2006.06.010
Google Scholar
[24]
Takahashi Y, Sakuma K, Itai T, et al. Speciation of antimony in pet bottles produced in Japan and China by X-ray absorption fine structure spectroscopy. Environ. Sci. Technol. 42 (2008) 9045-9050.
DOI: 10.1021/es802073x
Google Scholar
[25]
Westerhoff P, Prapaipong P, Shock E, et al. Antimony leaching from polyethylene terephthalate (PET) plastic used for bottled drinking water. Water Res. 42 (2008) 551-556.
DOI: 10.1016/j.watres.2007.07.048
Google Scholar
[26]
Tuzen M, Onal A, Soylak M. Determination of trace heavy metals in some textile products produced in Turkey. Bull. Chem. Soc. Ethiop. 22 (2008) 379-384.
DOI: 10.4314/bcse.v22i3.61213
Google Scholar
[27]
Mocak J, BondAM, Mitchell S, Scollary G. A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: application to voltammetric and stripping techniques (technical report). Pure Appl. Chem. 69 (1997) 297-328.
DOI: 10.1351/pac199769020297
Google Scholar
[28]
Brandao J, MoyoMand Okonkwo J. Determination of antimony in bottled water and polyethylene terephthalate bottles: A routine laboratory quality check. Water Sci. Technol. 14 (2014) 181-188.
DOI: 10.2166/ws.2013.187
Google Scholar
[29]
Goodlaxson B, Curtzwiler G, Vorst K. Evaluation of methods for determining heavy metal content in polyethylene terephthalate food packaging. J. Plast. Film. Sheet. 34 (2018) 119-139.
DOI: 10.1177/8756087917707336
Google Scholar
[30]
Perathoner S, Centi G. Wet hydrogen peroxide catalytic oxidation (WHPCO) of organic waste in agro-food and industrial streams. Top. Catal. 33 (2005) 207-224.
DOI: 10.1007/s11244-005-2529-x
Google Scholar
[31]
Taubinger RP , Wilson JR . The use of 50 per cent. Hydrogen peroxide for the wet oxidation of organic materials. Analyst. 90 (1965) 250-254.
DOI: 10.1039/an9659000429
Google Scholar
[32]
Engin MS, Uyanik A, Cay S, et al. Effect of the adsorptive character of filter papers on the concentrations determined in studies involving heavy metal ions. Adsorpt. Sci. Technol. 28 (2010) 837-846.
DOI: 10.1260/0263-6174.28.10.837
Google Scholar
[33]
Acemioglu B, Alma MH. Equilibrium Studies on Adsorption of Cu(II) from Aqueous Solution onto Cellulose. J. Colloid. Interf. Sci. 243 (2001) 81-84.
DOI: 10.1006/jcis.2001.7873
Google Scholar
[34]
Frew RG, Pickering WF. The sorption of metal salts by filter paper. J. Chromatogr. A. 47 (1970) 86-91.
DOI: 10.1016/0021-9673(70)80009-7
Google Scholar