Doping Concentration Tuning and Plasmonic Optical Properties Modelling of Metal Nano Particles Utilizing FDTD Method

Article Preview

Abstract:

Among noble metal nanoparticles (MNPs), plasmonic effect of gold and silver nanoparticles (Au NPs and Ag NPs) is interesting to study due to their high near-field energy. This makes them excellent particles to absorb and scatter incident radiation in optical applications such as coupling them to fluorescent emitters to enhance their radiative decay and emission rate. This paper reviews and studies the methodology required for tuning the doping concentration and modelling plasmonic optical properties of Au NPs and Ag NPs by using finite difference time domain (FDTD) method. The frequency-dependent optical behaviour of MNPs is discussed. Plasmonic optical properties of MNPs can be characterised by their dimension, shape and doping concentration. Dimension and shape of MNPs can be simply defined in FDTD space grid (known as Yee grid). However, tuning MNPs doping concentration is more challenging which is undertaken by changing the spacing between MNPs and lateral boundaries of FDTD Yee grid. This can be vastly useful in Au NPs and Ag NPs optical optimization and applications to estimate plasmonic resonance based on doping concentration of particles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

197-202

Citation:

Online since:

June 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Efrima, S. and H. Metiu: The Journal of Chemical Physics, 1979. 70(4): pp.1602-1613.

Google Scholar

[2] Aravind, P. and H. Metiu:Chemical Physics Letters, 1980. 74(2): pp.301-305.

Google Scholar

[3] Gersten, J. and A. Nitzan: The Journal of Chemical Physics, 1980. 73(7): pp.3023-3037.

Google Scholar

[4] Wang, D.-S., H. Chew, and M. Kerker: Applied optics, 1980. 19(14): pp.2256-2257.

Google Scholar

[5] Mirkin, C. and M. Ratner: Annu Rev Phys Chem, 1997. 101: p.1593.

Google Scholar

[6] Rampi, M.A., O.J. Schueller, and G.M. Whitesides: Applied Physics Letters, 1998. 72(14): pp.1781-1783.

Google Scholar

[7] Orendorff, C.J., T.K. Sau, and C.J. Murphy:Small, 2006. 2(5): pp.636-639.

Google Scholar

[8] Scaffardi, L., et al.: Nanotechnology, 2004. 16(1): p.158.

Google Scholar

[9] Haiss, W., et al.: Analytical chemistry, 2007. 79(11): pp.4215-4221.

Google Scholar

[10] Ahmed, H., J. Doran, and S. McCormack: Solar Energy, 2016. 126: pp.146-155.

Google Scholar

[11] Amendola, V., et al.: Journal of Physics: Condensed Matter, 2017. 29(20): p.203002.

Google Scholar

[12] Myroshnychenko, V., et al.: Chemical Society Reviews, 2008. 37(9): pp.1792-1805.

Google Scholar

[13] Alvarez, M.M., et al.: Journal of Physical Chemistry B, 1997. 101(19): pp.3706-3712.

Google Scholar

[14] Lyon, L.A., D.J. Pena, and M.J. Natan: The Journal of Physical Chemistry B, 1999. 103(28): pp.5826-5831.

Google Scholar

[15] Link, S. and M.A. El-Sayed, Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. 1999, ACS Publications.

DOI: 10.1021/jp9917648

Google Scholar

[16] Collin, R., Field Theory of Guided Waves 2nd edn (Piscataway, NJ: IEEE). (1990).

Google Scholar

[17] Ritchie, R.: Physical Review, 1957. 106(5): p.874.

Google Scholar

[18] Raether, H.: Springer tracts in modern physics. Vol. 111. 1988: Springer-Verlag.

Google Scholar

[19] Barnes, W.L., A. Dereux, and T.W. Ebbesen: Nature, 2003. 424(6950): pp.824-830.

DOI: 10.1038/nature01937

Google Scholar

[20] Moskovits, M.: Reviews of modern physics, 1985. 57(3): p.783.

Google Scholar

[21] Metiu, H. and P. Das: Annual Review of Physical Chemistry, 1984. 35(1): pp.507-536.

Google Scholar

[22] Yee, K.: IEEE Transactions on antennas and propagation, 1966. 14(3): pp.302-307.

Google Scholar

[23] Taflove, A.: IEEE Transactions on Electromagnetic Compatibility, 1980(3): pp.191-202.

Google Scholar

[24] Ghosh, S.K. and T. Pal: Chemical reviews, 2007. 107(11): pp.4797-4862.

Google Scholar

[25] Vial, A., et al.: Physical Review B, 2005. 71(8): p.085416.

Google Scholar

[26] Grand, J., et al.:Plasmonics, 2006. 1(2-4): pp.135-140.

Google Scholar

[27] Linden, S., J. Kuhl, and H. Giessen: Physical review letters, 2001. 86(20): p.4688.

Google Scholar

[28] Maier, S.A., Plasmonics: fundamentals and applications. 2007: Springer Science & Business Media.

Google Scholar

[29] Johnson, P.B. and R.-W. Christy: Physical review B, 1972. 6(12): p.4370.

Google Scholar

[30] Rakić, A.D., et al.: Applied optics, 1998. 37(22): pp.5271-5283.

Google Scholar

[31] Schneider, J.B., Understanding the finite-difference time-domain method. School of electrical engineering and computer science Washington State University.–URL: http://www. Eecs. Wsu. Edu/~ schneidj/ufdtd/(request data: 29.11. 2012), (2010).

Google Scholar