The Effect of Sn(II) Precursor on Morphology and Surface Area of as Synthesis SnO2 Nanotube

Article Preview

Abstract:

Tin oxide nanotubes (STs) were synthesized by the hydrothermal process using manganese dioxide nanowires (MWs) as a template and followed by oxalic acid treatment. The effect of the stannous chloride concentration on the structure and crystallite size of the product were investigated. The phase composition was determined by XRD. Morphologies were revealed by FESEM and TEM. Firstly, manganese dioxide nanowires were fabricated from KMnO4. Then, tin oxide nanoparticles were coated on the wall surfaces of MWs templates. The template was then leached out by oxalic acid treatment. Nanotubular structure of the final product was formed by the agglomeration of the tin oxide nanoparticles coating on the template surfaces. On increasing the stannous chloride amount, crystallite size and the electrochemical properties increased, while the specific surface area decreased.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

227-232

Citation:

Online since:

June 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Gao, X. Li, B. Lu, L. Chen, Y. Wang, F. Teng, J. Wang, Z. Zhang, X. Pan and E. Xie: Nanoscale. Vol. 4 (2012), p.3475.

Google Scholar

[2] J. Zhang, J. Guo, H. Xu and B. Cao: ACS Appl. Mater. Interfaces. Vol. 5 (2013), p.7893.

Google Scholar

[3] Q. Zhao, L. Ma, Q. Zhang, C. Wang and X. Xu: J. Nanomater. Vol. 2015 (2015), p.1.

Google Scholar

[4] L. L. Xing, B. He, Y. X. Nie, P. Deng, C. X. Cui and X. Y. Xue: Mater. Lett. Vol. 105 (2013), p.169.

Google Scholar

[5] H. Wang, L. Xi, R. Ma, Z. Lu, C.Y. Chung, I. Bello and J.A. Zapien: J. Solid State Chem. Vol. 190 (2012), p.104.

Google Scholar

[6] M. S. Park, Y. M. Kang, G. X. Wang, S. X. Dou and H. K. Liu: Adv. Funct. Mater. Vol. 18 (2008), p.455.

Google Scholar

[7] G.X. Wang, J.S. Park, M.S. Park and X.L. Gou: Sens. Actuators, B. Vol. 131 (2008), p.313.

Google Scholar

[8] J. Ye, H. Zhang, R. Yang, X. Li and L. Qi: Small. Vol. 6 (2010), p.296.

Google Scholar

[9] Y. Jia, L. He, Z. Guo, X. Chen, F. Meng, T. Luo, M. Li and J. Liu: J. Phys. Chem. C. Vol. 113 (2009), p.9581.

Google Scholar

[10] M. Lai, J. H. Lim, S. Mubeen, Y. Rheem, A. Mulchandani, M. A. Deshusses and N. V. Myung: Nanotechnology. Vol. 20 (2009), p.185602.

DOI: 10.1088/0957-4484/20/18/185602

Google Scholar

[11] J. Liu, J. Wang, Z. Ku, H. Wang, S. Chen, L. Zhang, J. Lin and Z. X. Shen: ACS nano. Vol. 10 (2015), p.1007.

Google Scholar

[12] M. Zhou, X. Zhang, J. Wei, S. Zhao, L. Wang and B. Feng: J. Phys. Chem. C. Vol. 115 (2010), p.1398.

Google Scholar

[13] D. C. Harris: Quantitative chemical analysis. (Macmillan, New York 2006).

Google Scholar

[14] O. Cevher and H. Akbulut: Acta Phys. Pol., A. Vol. 131 (2017), p.204.

Google Scholar

[15] D.V. Raj, N. Ponpandian, D. Mangalaraj and C. Viswanathan: Mater. Sci. Semicond. Process. Vol. 26 (2014), p.55.

Google Scholar