Influence of Preparation Methods of TiO2 Nano-Particle on Photodegradation of Methylene Blue

Article Preview

Abstract:

The dye-pigments and organic compounds are known as significant pollutants in wastewater of textile industrial. Among of treatment technologies, the photocatalysis using TiO2 nano particles has potential on-site process for removing the dye-pigments and organic compounds, due to no hazardous waste and inexpensive. In this work, the TiO2 nanoparticles were synthesized by two different methods of hydrothermal and sol-gel. Nanoparticle of TiO2 synthesized by hydrothermal method contained pure anatase phase as similar as the TiO2 nanoparticles synthesized by sol-gel method. However, the TiO2 synthesized by hydrothermal method provided the higher specific surface area and pore volume rather than the another TiO2. Further, the high efficiency 86% of methylene blue photodegradation was observed during the by using TiO2 synthesized by hydrothermal method as photocatalyst, whereas the efficiency was only 72% for TiO2 synthesized by sol-gel method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

84-89

Citation:

Online since:

June 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Koprivanac, G. Bosanac, Z. Grabaric and S. Papic: Environ. Technol. Vol. 14 (1993), p.385.

Google Scholar

[2] F. Tardieu: Front. Physiol. Vol. 4. (2013).

Google Scholar

[3] N. Abdel-Raouf, A.A. Al-Homaida and I.B.M. Ibraheem: Saudi J. Bio. Sci. Vol. 19 (2012), p.257.

Google Scholar

[4] O. Iorhemen, R. Hamza and J. Tay: Membranes Vol. 6 (2016), p.33.

Google Scholar

[5] V. Yargeau: Metropolitan Sustainability (2012), p.390.

Google Scholar

[6] P.A. Pekakis, N.P. Xekoukoulotakis and D. Mantzavinos: Water Res. (2016), p.1276.

Google Scholar

[7] U.G. Akpan and B.H. Hameed: J. Hazard. Mater. Vol. 170 (2009), p.520.

Google Scholar

[8] X. Xu and J. Zhu: Recent Patents on Chemical Engineering Vol. 5 (2012), p.134.

Google Scholar

[9] S.S. Mali, C.A. Betty, P.N. Bhosale and P.S. Patil: Cryst. Eng. Comm. Vol. 13 (2011), p.6349.

Google Scholar

[10] S.G. Ullattil and P. Periyat: Sol-gel Materials for Energy, Environment and Electronic Applications (2017), p.271.

DOI: 10.1007/978-3-319-50144-4_9

Google Scholar

[11] M. Arabnezhad, M.S. Afarani and A. Jafari: Int. J. Environ. Sci. Te. Vol. 16 (2017), p.463.

Google Scholar

[12] P. Nyamukamba, O. Okoh, H. Mungondori, R. Taziwa and S. Zinya: Titanium dioxide – Material for a sustainable environment (2018), p.151.

DOI: 10.5772/intechopen.75425

Google Scholar

[13] O. Carp, C.L. Huisman and A. Reller: Prog. Solid State Ch. Vol. 32 (2004), p.33.

Google Scholar

[14] N. Yuangpho, D.T.T. Trinh, D. Channei, W. Khanitchaidecha and A. Nakaruk: J. Aus. Ceram. Soc. Vol. 54 (2018), p.557.

DOI: 10.1007/s41779-018-0184-5

Google Scholar

[15] T.T.T. Dang, S.T.T. Le, D. Channei, W. Khanitchaidecha and A. Nakaruk: Res. Chem. Intermed. Vol. 42 (2016), p.5961.

DOI: 10.1007/s11164-015-2417-3

Google Scholar

[16] D. Trinh, D. Channei, W. Khanitchaidecha and A. Nakaruk: Walailak J. Sci. Tech. Vol. 15 (2018), p.787.

DOI: 10.48048/wjst.2018.5969

Google Scholar

[17] A. Nakaruk, D. Ragazzon and C.C. Sorrell, Thin Solid Films Vol. 518 (2010), p.3735.

DOI: 10.1016/j.tsf.2009.10.109

Google Scholar

[18] M. Rehan, X. Lai and G.M. Kale: Cryst. Eng. Comm. Vol. 13 (2011), p.3725.

Google Scholar

[19] D.A.H. Hanaor and C.C. Sorrell: J. Mater. Sci. Vol. 46 (2011), p.855.

Google Scholar

[20] S.K. Kansal, S. Sood, A. Umar and S.K. Mehta: J. Alloy. Compd. Vol. 581 (2013), p.392.

Google Scholar

[21] S.T.T. Le, W. Khanitchaidecha and A. Nakaruk: Bull. Mater. Sci. Vol. 39 (2016), p.569.

Google Scholar

[22] S. Kruanetr, N. Tan-Arsa, and R. Wanchanthuek: Int. J. Sci. Res. Publ. Vol. 3 (2013), p.1.

Google Scholar

[23] M.N. Chong, B. Jin, C.W.K. Chow and C. Saint: Water Res. Vol. 44 (2010), p.2997.

Google Scholar