Enhancement of Photocatalytic Performance of Anatase by Silver Deposition through Chemical Reduction Process at Room Temperature

Article Preview

Abstract:

Herein, Ag-anatase photocatalysts were synthesized though chemical reduction method under room temperature by using PVP and NaBH4 as stabilizer and strong reducing agent, respectively. The prepared photocatalysts were characterized by the following technique: XRD, SEM, HR-TEM, EDX, and UV-Vis-NIR. The photocatalytic performance of 0.05 g of photocatalysts were performed under UV irradiation within 1 h by using 10 mg/L of rhodamine B as the representative of organic pollutant. The results demonstrated that the optimum Ag loading contents were 2 %wt (2-ST) which can degrade rhodamine B up to 98.54%. Therefore, the photocatalytic performance of bare anatase could be enhanced by deposited Ag nanoparticles. Further, this prepared Ag-anatase could be suitable for environmental application.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

71-77

Citation:

Online since:

June 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Zhang, P. Zhou, J. Liu, and J. Yu, New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2, Phys. Chem. Chem. Phys. 38 (2014) 20382-20386.

DOI: 10.1039/c4cp02201g

Google Scholar

[2] S. Xie, Q. Zhang, G. Liu, and Y. Wang, Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures, Chem. Commun. 1 (2016) 35-59.

DOI: 10.1039/c5cc07613g

Google Scholar

[3] O. Ola and M. M. Maroto-Valer, Journal of Photochemistry and Photobiology C, Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction, Photochemistry Reviews. 24 (2015) 16-42.

DOI: 10.1016/j.jphotochemrev.2015.06.001

Google Scholar

[4] E. Albiter, M. Valenzuela, S. Alfaro, G. Valverde-Aguilar, and F. Martínez-Pallares, Photocatalytic deposition of Ag nanoparticles on TiO2:Metal precursor effect on the structural and photoactivity properties, J. Saudi Chem. Soc. 5 (2015) 563-573.

DOI: 10.1016/j.jscs.2015.05.009

Google Scholar

[5] M. Hussain, S. Tariq, M. Ahmad, H. Sun, K. Maaz, G. Ali, S. Z. Hussain, M. Iqbal, S. Karim, and A. Nisar, AgTiO2 nanocomposite for environmental and sensing applications, Mater. Chem. Phys. 181 (2016) 194-203.

DOI: 10.1016/j.matchemphys.2016.06.049

Google Scholar

[6] R. Nainani, P. Thakur, and M. Chaskar, Synthesis of silver doped TiO2 nanoparticles for the improved photocatalytic degradation of methyl orange, ‎Mater. Sci. Eng. B. 1 (2012) 52-58.

Google Scholar

[7] A. A. Ashkarran, S. M. Aghigh, and N. J. Farahani, Visible light photo-and bioactivity of Ag/TiO2 nanocomposite with various silver contents, Curr. Appl. Phys. 4 (2011) 1048-1055.

DOI: 10.1016/j.cap.2011.01.042

Google Scholar

[8] D.-S. Lee and Y.-W. Chen, Nano Ag/TiO2 catalyst prepared by chemical deposition and its photocatalytic activity, J. Taiwan. Inst. Chem. Eng. 2 (2014) 705-712.

DOI: 10.1016/j.jtice.2013.07.007

Google Scholar

[9] W. Li, R. Liang, A. Hu, Z. Huang, and Y. N. Zhou, Generation of oxygen vacancies in visible light activated one-dimensional iodine TiO2 photocatalysts, RSC Adv. 70 (2014) 36959-36966.

DOI: 10.1039/c4ra04768k

Google Scholar

[10] E. T. Wahyuni, R. Roto, and M. PrameSwari, TiO2/Ag-nanoparticle as a Photocatalyst for Dyes Degradation, Inter. Conf. on Envi. Sci. and Tech. (2017) 615.

Google Scholar

[11] M. M. Khan, S. A. Ansari, M. I. Amal, J. Lee, and M. H. Cho, Highly visible light active Ag@ TiO2 nanocomposites synthesized using an electrochemically active biofilm, Nanoscale. 10 (2013) 4427-4435.

DOI: 10.1039/c3nr00613a

Google Scholar

[12] D. P. Kumar, N. L. Reddy, M. Karthik, B. Neppolian, J. Madhavan, and M. Shankar, Solar light sensitized p-Ag2O/n-TiO2 nanotubes heterojunction photocatalysts for enhanced hydrogen production in aqueous-glycerol solution, Sol. Energy Mater. Sol. Cells. 154 (2016) 78-87.

DOI: 10.1016/j.solmat.2016.04.033

Google Scholar

[13] J. V. Hernández, S. Coste, A. G. Murillo, F. C. Romo, and A. Kassiba, Effects of metal doping (Cu, Ag, Eu) on the electronic and optical behavior of nanostructured TiO2, J. Alloy. Compd. 710 (2017) 355-363.

DOI: 10.1016/j.jallcom.2017.03.275

Google Scholar

[14] K. H. Leong, B. L. Gan, S. Ibrahim, and P. Saravanan, Synthesis of surface plasmon resonance (SPR) triggered Ag/TiO2 photocatalyst for degradation of endocrine disturbing compounds, Appl. Surf. Sci. 319 (2014) 128-135.

DOI: 10.1016/j.apsusc.2014.06.153

Google Scholar

[15] E. Liu, L. Kang, Y. Yang, T. Sun, X. Hu, C. Zhu, H. Liu, Q. Wang, X. Li, and J. Fan, Plasmonic Ag deposited TiO2 nano-sheet film for enhanced photocatalytic hydrogen production by water splitting, Nanotechnology. 16 (2014) 165401.

DOI: 10.1088/0957-4484/25/16/165401

Google Scholar

[16] A. L. Ortiz, M. M. Zaragoza, J. S. Gutiérrez, M. M. da Silva Paula, and V. Collins-Martínez, Silver oxidation state effect on the photocatalytic properties of Ag doped TiO2 for hydrogen production under visible light, ‎Int. J. Hydrog. Energy. 48 (2015) 17308-17315.

DOI: 10.1016/j.ijhydene.2015.09.058

Google Scholar

[17] M. Stucchi, C. Bianchi, C. Argirusis, V. Pifferi, B. Neppolian, G. Cerrato, and D. Boffito, Ultrasound assisted synthesis of Ag-decorated TiO2 active in visible light, Ultrasonics sonochemistry. 40 (2018) 282-288.

DOI: 10.1016/j.ultsonch.2017.07.016

Google Scholar

[18] M. R. Khan, T. W. Chuan, A. Yousuf, M. Chowdhury, and C. K. Cheng, Schottky barrier and surface plasmonic resonance phenomena towards the photocatalytic reaction: study of their mechanisms to enhance photocatalytic activity, Catal. Sci. Technol. 5 (2015) 2522-2531.

DOI: 10.1039/c4cy01545b

Google Scholar

[19] N. T. Thanh, N. Maclean, and S. Mahiddine, Mechanisms of nucleation and growth of nanoparticles in solution, Chem. Rev. 15 (2014) 7610-7630.

DOI: 10.1021/cr400544s

Google Scholar