In Situ Synthesis of VO2 Embedded in Graphite/Si as a High Performance Anode for Lithium-Ion Batteries

Article Preview

Abstract:

To buffer the volume changes of silicon-based anode material and stabilize the solid-electrolyte-interface (SEI) layer formed in the electrolyte, a core-shell structure with VO2 coating is newly designed. In this composite, the pitch modified spherical graphite serves as a core, and the Si particles are uniformly dispersed on its surface, then the VO2 is synthesized in situ. The modified graphite/Si/VO2 (Si@G@V) anode exhibits a reversible capacity of 1247 mAh g-1 at the current density of 0.1 A g-1 after 50 cycles, obtain a capacity retention of ~99%. The rate capability of ~320 mAh g-1 at the current density of 10 A g-1 is also obtained. The excellent cyclic stability and superior rate performance mainly attributed to the uniform dispersion of Si particles in the pitch modified spherical graphite, the core-shell structure of the material as well as the in-situ synthesis of VO2. This simple synthesis process is of great significance to reduce the reunion and constrain the volume changes of silicon.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-12

Citation:

Online since:

June 2020

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2020 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Hou, H.; Banks, C. E.; Jing, M.; Zhang, Y.; Ji, X., Carbon Quantum Dots and Their Derivative 3D Porous Carbon Frameworks for Sodium-Ion Batteries with Ultralong Cycle Life. Advanced Materials 2015, 27(47), 7861-7866.

DOI: 10.1002/adma.201503816

Google Scholar

[2] Liu, G., Development of a general sustainability indicator for renewable energy systems: A review. Renewable and Sustainable Energy Reviews 2014, 31, 611-621.

DOI: 10.1016/j.rser.2013.12.038

Google Scholar

[3] Ge, X.; Li, X.; Wang, Z.; Guo, H.; Yan, G.; Wu, X.; Wang, J., Facile synthesis of NaVPO4F/C cathode with enhanced interfacial conductivity towards long-cycle and high-rate sodium-ion batteries. Chemical Engineering Journal 2019, 357, 458-462.

DOI: 10.1016/j.cej.2018.09.099

Google Scholar

[4] Zhong, S.; Chen, W.; Wu, L.; Liu, J., A PEG-assisted rheological phase reaction synthesis of 5LiFePO4⋅Li3V2(PO4)3/C as cathode material for lithium ion cells. Ionics 2012, 18 (5), 523-527.

DOI: 10.1007/s11581-012-0701-4

Google Scholar

[5] Liu, Y.; Zhang, Z.; Fu, Y.; Wang, Q.; Pan, J.; Su, M.; Battaglia, V. S., Investigation the electrochemical performance of Li1.2Ni0.2Mn0.6O2 cathode material with ZnAl 2 O 4 coating for lithium ion batteries. Journal of Alloys and Compounds 2016, 685, 523-532.

DOI: 10.1016/j.jallcom.2016.05.329

Google Scholar

[6] Zheng, J. C.; Han, Y. D.; Zhang, B.; Shen, C.; Ming, L.; Zhang, J. F., Comparative investigation of phosphate-based composite cathode materials for lithium-ion batteries. ACS applied materials & interfaces 2014, 6 (16), 13520-6.

DOI: 10.1021/am502601r

Google Scholar

[7] Li, L.; Xu, M.; Yao, Q.; Chen, Z.; Song, L.; Zhang, Z.; Gao, C.; Wang, P.; Yu, Z.; Lai, Y., Alleviating Surface Degradation of Nickel-Rich Layered Oxide Cathode Material by Encapsulating with Nanoscale Li-Ions/Electrons Superionic Conductors Hybrid Membrane for Advanced Li-Ion Batteries. ACS applied materials & interfaces 2016, 8 (45), 30879-30889.

DOI: 10.1021/acsami.6b09197

Google Scholar

[8] Chen, H.; Hu, Q.; Huang, Z.; He, Z.; Wang, Z.; Guo, H.; Li, X., Synthesis and electrochemical study of Zr-doped Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as cathode material for Li-ion battery. Ceramics International 2016, 42 (1), 263-269.

DOI: 10.1016/j.ceramint.2015.08.104

Google Scholar

[9] Wang, H.; Liu, S.; Ren, Y.; Wang, W.; Tang, A., Ultrathin Na1.08V3O8 nanosheets—a novel cathode material with superior rate capability and cycling stability for Li-ion batteries. Energy & Environmental Science 2012, 5 (3), 6173.

DOI: 10.1039/c2ee03215e

Google Scholar

[10] Pan, W.; Peng, W.; Yan, G.; Guo, H.; Wang, Z.; Li, X.; Gui, W.; Wang, J.; Chen, N., Suppressing the voltage decay and enhancing the electrochemical performance of Li1. 2Mn0. 54Co0. 13Ni0. 13O2 by multifunctional Nb2O5 coating. Energy Technology 2018, 6 (11), 2139-2145.

DOI: 10.1002/ente.201800253

Google Scholar

[11] Zhao, J.; Wang, Z.; Wang, J.; Guo, H.; Li, X.; Gui, W.; Chen, N.; Yan, G., Anchoring K+ in Li+ sites of LiNi0. 8Co0. 15Al0. 05O2 cathode material to suppress its structural degradation during high‐voltage cycling. Energy technology 2018, 6 (12), 2358-2366.

DOI: 10.1002/ente.201800361

Google Scholar

[12] Wang, J.; Zhang, G.; Liu, Z.; Li, H.; Liu, Y.; Wang, Z.; Li, X.; Shih, K.; Mai, L., Li3V(MoO4) 3 as a novel electrode material with good lithium storage properties and improved initial coulombic efficiency. Nano Energy 2018, 44, 272-278.

DOI: 10.1016/j.nanoen.2017.11.079

Google Scholar

[13] Yan, Z.; Hu, Q.; Yan, G.; Li, H.; Shih, K.; Yang, Z.; Li, X.; Wang, Z.; Wang, J., Co3O4 /Co nanoparticles enclosed graphitic carbon as anode material for high performance Li-ion batteries. Chemical Engineering Journal 2017, 321, 495-501.

DOI: 10.1016/j.cej.2017.03.146

Google Scholar

[14] Li, T.; Li, X.; Wang, Z.; Guo, H.; Li, Y.; Wang, J., A new design concept for preparing nickel-foam-supported metal oxide microspheres with superior electrochemical properties. Journal of Materials Chemistry A 2017, 5 (26), 13469-13474.

DOI: 10.1039/c7ta02789c

Google Scholar

[15] Li, T.; Li, X.; Wang, Z.; Guo, H.; Li, Y., A novel NiCo2O4 anode morphology for lithium-ion batteries. Journal of Materials Chemistry A 2015, 3 (22), 11970-11975.

DOI: 10.1039/c5ta01928a

Google Scholar

[16] Jin, Y.; Tan, Y.; Hu, X.; Zhu, B.; Zheng, Q.; Zhang, Z.; Zhu, G.; Yu, Q.; Jin, Z.; Zhu, J., Scalable Production of the Silicon-Tin Yin-Yang Hybrid Structure with Graphene Coating for High Performance Lithium-Ion Battery Anodes. ACS applied materials & interfaces 2017, 9 (18), 15388-15393.

DOI: 10.1021/acsami.7b00366

Google Scholar

[17] Zou, B.; Peng, F.; Wan, N.; Wilson, J. G.; Xiong, Y., Sulfur dioxide exposure and environmental justice: a multi–scale and source–specific perspective. Atmospheric Pollution Research 2014, 5 (3), 491-499.

DOI: 10.5094/apr.2014.058

Google Scholar

[18] Zhou, Y.; Guo, H.; Yan, G.; Wang, Z.; Li, X.; Yang, Z.; Zheng, A.; Wang, J., Fluidized bed reaction towards crystalline embedded amorphous Si anode with much enhanced cycling stability. Chemical communications 2018, 54 (30), 3755-3758.

DOI: 10.1039/c8cc00575c

Google Scholar

[19] Li, P.; Zhao, G.; Zheng, X.; Xu, X.; Yao, C.; Sun, W.; Dou, S. X., Recent progress on silicon-based anode materials for practical lithium-ion battery applications. Energy Storage Materials, 2018, 15, 422-446.

DOI: 10.1016/j.ensm.2018.07.014

Google Scholar

[20] Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D., Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science 2011, 4 (9), 3243.

DOI: 10.1039/c1ee01598b

Google Scholar

[21] Lin, D.; Lu, Z.; Hsu, P.-C.; Lee, H. R.; Liu, N.; Zhao, J.; Wang, H.; Liu, C.; Cui, Y., A high tap density secondary silicon particle anode fabricated by scalable mechanical pressing for lithium-ion batteries. Energy & Environmental Science 2015, 8(8), 2371-2376.

DOI: 10.1039/c5ee01363a

Google Scholar

[22] Schroder, K.; Alvarado, J.; Yersak, T. A.; Li, J.; Dudney, N.; Webb, L. J.; Meng, Y. S.; Stevenson, K. J., The Effect of Fluoroethylene Carbonate as an Additive on the Solid Electrolyte Interphase on Silicon Lithium-Ion Electrodes. Chemistry of Materials 2015, 27 (16), 5531-5542.

DOI: 10.1021/acs.chemmater.5b01627

Google Scholar

[23] Jin, Y.; Li, S.; Kushima, A.; Zheng, X.; Sun, Y.; Xie, J.; Sun, J.; Xue, W.; Zhou, G.; Wu, J.; Shi, F.; Zhang, R.; Zhu, Z.; So, K.; Cui, Y.; Li, J., Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%. Energy & Environmental Science 2017, 10 (2), 580-592.

DOI: 10.1039/c6ee02685k

Google Scholar

[24] Yang, Z.; Guo, H.; Li, X.; Wang, Z.; Wang, J.; Wang, Y.; Yan, Z.; Zhang, D., Graphitic carbon balanced between high plateau capacity and high rate capability for lithium ion capacitors. Journal of Materials Chemistry A 2017, 5 (29), 15302-15309.

DOI: 10.1039/c7ta03862c

Google Scholar

[25] Chen, S.; Chen, Z.; Luo, Y.; Xia, M.; Cao, C., Silicon hollow sphere anode with enhanced cycling stability by a template-free method. Nanotechnology 2017, 28 (16), 165404.

DOI: 10.1088/1361-6528/aa63a1

Google Scholar

[26] Zhang, H.; Li, X.; Guo, H.; Wang, Z.; Zhou, Y., Hollow Si/C composite as anode material for high performance lithium-ion battery. Powder Technology 2016, 299, 178-184.

DOI: 10.1016/j.powtec.2016.05.002

Google Scholar

[27] Feng, J.; Zhang, Z.; Ci, L.; Zhai, W.; Ai, Q.; Xiong, S., Chemical dealloying synthesis of porous silicon anchored by in situ generated graphene sheets as anode material for lithium-ion batteries. Journal of Power Sources 2015, 287, 177-183.

DOI: 10.1016/j.jpowsour.2015.04.051

Google Scholar

[28] Cui,L. F.; Hu, L.; Choi, J. W.; Cui, Y., Light-weight free-standing carbon nanotube-silicon films for anodes of lithium ion batteries. ACS nano 2010, 4(7), 3671-3678.

DOI: 10.1021/nn100619m

Google Scholar

[29] Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L.; Cui, Y., Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nature nanotechnology 2012, 7 (5), 310-5.

DOI: 10.1038/nnano.2012.35

Google Scholar

[30] Chen, L.; Wang, K.; Xie, X.; Xie, J., Enhancing Electrochemical Performance of Silicon Film Anode by Vinylene Carbonate Electrolyte Additive. Electrochemical and Solid-State Letters 2006, 9 (11), A512.

DOI: 10.1149/1.2338771

Google Scholar

[31] Yoshimura, K.; Suzuki, J.; Sekine, K.; Takamura, T., Evaluation of the Li insertion/extraction reaction rate at a vacuum-deposited silicon film anode. Journal of Power Sources 2005, 146 (1-2), 445-447.

DOI: 10.1016/j.jpowsour.2005.03.050

Google Scholar

[32] Tang, W J.; Peng, W J.; Yan, G C.; Guo H J.; Li, X H.; Zhou, Y., Effect of fluoroethylene carbonate as an electrolyte additive on the cycle performance of silicon-carbon composite anode in lithium-ion battery. Ionics 2017, 23 (12), 3281-3288.

DOI: 10.1007/s11581-017-2143-5

Google Scholar

[33] Wu, X.; Li, Y.; Li, C.; He, Z.; Xiang, Y.; Xiong, L.; Chen, D.; Yu, Y.; Sun, K.; He, Z.; Chen, P., The electrochemical performance improvement of LiMn2O4 /Zn based on zinc foil as the current collector and thiourea as an electrolyte additive. Journal of Power Sources 2015, 300, 453-459.

DOI: 10.1016/j.jpowsour.2015.09.096

Google Scholar

[34] Das, B.; Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R., Nano-composites SnO(VOx ) as anodes for lithium ion batteries. Journal of Solid State Electrochemistry 2010, 15 (2), 259-268.

DOI: 10.1007/s10008-010-1126-5

Google Scholar

[35] Shi, Y.; Chou, S.L.; Wang, J.Z.; Li, H.J.; Liu, H.K.; Wu, Y.P., In-situ hydrothermal synthesis of graphene woven VO2 nanoribbons with improved cycling performance. Journal of Power Sources 2013, 244, 684-689.

DOI: 10.1016/j.jpowsour.2012.11.151

Google Scholar

[36] Won, J. M.; Ko, Y. N.; Lee, J. K.; Kang, Y. C., Superior electrochemical properties of rutile VO2-carbon composite microspheres as a promising anode material for lithium ion batteries. Electrochimica Acta 2015, 156, 179-187.

DOI: 10.1016/j.electacta.2015.01.021

Google Scholar

[37] He, G.; Li, L.; Manthiram, A., VO2/rGO nanorods as a potential anode for sodium- and lithium-ion batteries. Journal of Materials Chemistry A 2015, 3 (28), 14750-14758.

DOI: 10.1039/c5ta03188e

Google Scholar

[38] Guo, W.; Wang, Y.; Li, Q.; Wang, D.; Zhang, F.; Yang, Y.; Yu, Y., SnO2@C@VO2 Composite Hollow Nanospheres as an Anode Material for Lithium-Ion Batteries. ACS applied materials & interfaces 2018, 10 (17), 14993.

DOI: 10.1021/acsami.7b19448

Google Scholar

[39] Nicotra, G.; Bongiorno, C.; Caristia, L.; Coffa, S.; Spinella, C., Quantitative electron energy loss spectroscopy of Si nanoclusters embedded in SiOx. Microelectronic Engineering 2007, 84 (3), 486-489.

DOI: 10.1016/j.mee.2006.10.083

Google Scholar

[40] Bosch, H.; Kip, B.J.; Van Ommen, J.G.; Gellings, P.J, Factors influencing the temperature-programmed reduction profiles of vanadium pentoxide. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases 1984, 80(9), 2479-2488.

DOI: 10.1039/f19848002479

Google Scholar