Microstructure-Property Correlations of Multifunctional Si-Fe Nanocomposite

Article Preview

Abstract:

Multifunctional Si-Fe nanocomposites with varying atom percent of Fe were prepared by the high energy ball milling technique. Presence of pristine Fe and Si as separate entities in the nanocomposites was confirmed through the analyses of their Mössbauer spectrum and, x-ray diffraction patterns. The average grain size of Si has been found to be 40nm and the superparamagnetic Fe particles in the nanocomposite systems has been found to increase with increase in milling time. Transmission electron microscopic images revealed discontinuous distribution of Fe in the Si matrix. The Si-Fe nanocomposites exhibit both magnetic and photoluminescence properties at room temperature. The photoluminescence intensity was found to decrease with increase in Fe content in the nanocomposite samples, however, saturation magnetization and retentivity increases. Thus it is imperative that by adjusting the composition of Si-Fe nanocomposites their properties can be tailored to suit the desired requirements for applications in electronic devices.

You might also be interested in these eBooks

Info:

Periodical:

Nano Hybrids (Volume 9)

Pages:

15-23

Citation:

Online since:

November 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Salonitis, J. Pandremenos, J. Paralikas, G. Chryssolouris, Multifunctional materials: engineering applications and processing challenges, Int. J. Adv. Manuf. Technol. 49 (2010) 803-826.

DOI: 10.1007/s00170-009-2428-6

Google Scholar

[2] N. Koteeswara Reddy, M. Devika, C.W. Tu, Vertically aligned ZnO nanorods on flexible substrates for multifunctional device applications: Easy and cost-effective route, Mater. Lett. 120 (2014) 62-64.

DOI: 10.1016/j.matlet.2014.01.029

Google Scholar

[3] T. Wei, C.P. Li, Q.J. Zhou, Y.L. Zou, L.S. Zhang, Upconversion luminescence and ferroelectric properties of Er3+ doped Bi4Ti3O12 – SrBi4Ti4O15, Mater. Lett. 118 (2014) 92-95.

DOI: 10.1016/j.matlet.2013.12.054

Google Scholar

[4] T. Wei, Z. Chang, Q.J. Zhou, D.M. An, Z.P. Li, F.C. Sun, Bright green emission in Ho doped Bi1/2Na1/2TiO3 ferroelectric ceramics, Mater. Lett. 115 (2014) 129-131.

DOI: 10.1016/j.matlet.2013.10.051

Google Scholar

[5] F.E. Kruis, H. Fissan, A. Peled, Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications - a review, J. Aerosol Sci. 29 (1998) 511-535.

DOI: 10.1016/s0021-8502(97)10032-5

Google Scholar

[6] J.G. Werner, M.R.J. Scherer, U. Steiner, U. Wiesner. Gyroidal mesoporous multifunctional nanocomposites via atomic layer deposition, Nanoscale 6 (2014) 8736-8742.

DOI: 10.1039/c4nr01948b

Google Scholar

[7] S. Dhara, P.K. Giri, Size Dependent Anisotropic Strain and Optical Properties of Strained Si Nanocrystals, J. Nanosci. Nanotechnol. 11 (2011) 9215-9221.

DOI: 10.1166/jnn.2011.4294

Google Scholar

[8] G. Ledoux, O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn, V. Paillard, Photoluminescence properties of silicon nanocrystals as a function of their size, Phys. Rev. B 62 (2000) 15942-15951.

DOI: 10.1103/physrevb.62.15942

Google Scholar

[9] M. Abdellaoui, Microstructural and thermal investigations of iron–silicon nanocomposite materials synthesised by rod milling, J. Alloys Compd. 264(1998) 285-292.

DOI: 10.1016/s0925-8388(97)00268-5

Google Scholar

[10] D. Roy, S. Ghosh, a. Basumallick, B. Basu, Preparation of Ti-aluminide reinforced in situ aluminium matrix composites by reactive hot pressing, J. Alloys Compd. 436 (2007) 107-111.

DOI: 10.1016/j.jallcom.2006.07.017

Google Scholar

[11] S.P. Pati, D. Das, Interparticle and collective states of interactions in mechanically milled Fe/CoO nanocomposites, J. Nanoparticle Res. 16 (2014) 2278-2289.

DOI: 10.1007/s11051-014-2278-5

Google Scholar

[12] M. Knobel, W.C. Nunes, L.M. Socolovsky, E. DeBiasi, J.M. Vargas,  J.C. Denardin, Superparamagnetism and Other Magnetic Features in Granular Materials: A Review on Ideal and Real Systems, J. Nanosci. Nanotechnol. 8 (2008) 2836-2857.

DOI: 10.1166/jnn.2008.15348

Google Scholar

[13] M. Ray, S.M. Hossain, R.F. Klie, K. Banerjee, S. Ghosh, Free standing luminescent silicon quantum dots: evidence of quantum confinement and defect related transitions, Nanotechnology, 21 (2010) 505602-505611.

DOI: 10.1088/0957-4484/21/50/505602

Google Scholar