[1]
Y. Zhou, M. Eck, M. Kruger, Bulk-heterojunction hybrid solar cells based on colloidal nanocrystals and conjugated polymers, Energy & Environmental Science 3 (2010) 1851–1864.
DOI: 10.1039/c0ee00143k
Google Scholar
[2]
M. Wright, A. Uddin, Organic—inorganic hybrid solar cells: A comparative review, Solar Energy Materials and Solar Cells 107 (2012) 87–111.
DOI: 10.1016/j.solmat.2012.07.006
Google Scholar
[3]
J. Tang, K.W. Kemp, S. Hoogland, K.S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath, D. Cha, K.W. Chou, A. Fischer, A. Amassian, J.B. Asbury, E.H. Sargent, Colloidal-quantum-dot photovoltaics using atomic-ligand passivation, Nat Mater 10 (2011).
DOI: 10.1038/nmat3118
Google Scholar
[4]
A.K. Rath, M. Bernechea, L. Martinez, de Arquer, F. Pelayo Garcia, J. Osmond, G. Konstantatos, Solution-processed inorganic bulk nano-heterojunctions and their application to solar cells, Nat Photon 6 (2012) 529–534.
DOI: 10.1038/nphoton.2012.139
Google Scholar
[5]
Z. Liu, Y. Sun, J. Yuan, H. Wei, X. Huang, L. Han, W. Wang, H. Wang, W. Ma, High-Efficiency Hybrid Solar Cells Based on Polymer/PbSxSe1-x Nanocrystals Benefiting from Vertical Phase Segregation, Advanced Materials 25 (2013) 5772–5778.
DOI: 10.1002/adma.201302340
Google Scholar
[6]
C. -H.M. Chuang, P.R. Brown, V. Bulović, M.G. Bawendi, Improved performance and stability in quantum dot solar cells through band alignment engineering, Nat Mater 13 (2014) 796–801.
DOI: 10.1038/nmat3984
Google Scholar
[7]
M. Jørgensen, K. Norrman, F.C. Krebs, Stability/degradation of polymer solar cells, Solar Energy Materials and Solar Cells 92 (2008) 686–714.
DOI: 10.1016/j.solmat.2008.01.005
Google Scholar
[8]
N.M. Gabor, Z. Zhong, K. Bosnick, J. Park, P.L. McEuen, Extremely Efficient Multiple Electron-Hole Pair Generation in Carbon Nanotube Photodiodes, Science 325 (2009) 1367–1371.
DOI: 10.1126/science.1176112
Google Scholar
[9]
R.A. Hatton, A.J. Miller, Silva, S. R. P., Carbon nanotubes: a multi-functional material for organic optoelectronics, Journal of Materials Chemistry 18 (2008) 1183–1192.
DOI: 10.1039/b713527k
Google Scholar
[10]
E. Kymakis, Amaratunga, G. A. J., Single-wall carbon nanotube/conjugated polymer photovoltaic devices, Applied Physics Letters 80 (2002) 112–114.
DOI: 10.1063/1.1428416
Google Scholar
[11]
A.J. Miller, R.A. Hatton, Silva, S. R. P., Water-soluble multiwall-carbon-nanotube-polythiophene composite for bilayer photovoltaics, Applied Physics Letters 89 (2006) 123115-123115-3.
DOI: 10.1063/1.2356115
Google Scholar
[12]
T.M. Barnes, J.D. Bergeson, R.C. Tenent, B.A. Larsen, G. Teeter, K.M. Jones, J.L. Blackburn, van de Lagemaat, Jao, Carbon nanotube network electrodes enabling efficient organic solar cells without a hole transport layer, Applied Physics Letters 96 (2010).
DOI: 10.1063/1.3453445
Google Scholar
[13]
P.R. Somani, S.P. Somani, M. Umeno, Application of metal nanoparticles decorated carbon nanotubes in photovoltaics, Applied Physics Letters 93 (2008) 33151–33153.
DOI: 10.1063/1.2963470
Google Scholar
[14]
M. Eck, C. van Pham, S. Zufle, M. Neukom, M. Sessler, D. Scheunemann, E. Erdem, S. Weber, H. Borchert, B. Ruhstaller, M. Kruger, Improved efficiency of bulk heterojunction hybrid solar cells by utilizing CdSe quantum dot-graphene nanocomposites, Physical Chemistry Chemical Physics 16 (2014).
DOI: 10.1039/c4cp01566e
Google Scholar
[15]
V. Georgakilas, D. Gournis, V. Tzitzios, L. Pasquato, D.M. Guldi, M. Prato, Decorating carbon nanotubes with metal or semiconductor nanoparticles, Journal of Materials Chemistry 17 (2007) 2679–2694.
DOI: 10.1039/b700857k
Google Scholar
[16]
F. Mammeri, A. Ballarin, M. Giraud, G. Brusatin, S. Ammar, Photoluminescent properties of new quantum dot nanoparticles/carbon nanotubes hybrid structures, Colloids and Surfaces A: Physicochemical and Engineering Aspects 439 (2013) 138–144.
DOI: 10.1016/j.colsurfa.2013.03.026
Google Scholar
[17]
D. Eder, Carbon Nanotube−Inorganic Hybrids, Chemical Reviews 110 (2010) 1348–1385.
DOI: 10.1021/cr800433k
Google Scholar
[18]
C.V. Pham, M. Eck, M. Krueger, Thiol functionalized reduced graphene oxide as a base material for novel graphene-nanoparticle hybrid composites, Chemical Engineering Journal 231 (2013) 146–154.
DOI: 10.1016/j.cej.2013.07.007
Google Scholar
[19]
Y. Yuan, F. -S. Riehle, H. Gu, R. Thomann, G. Urban, M. Krüger, Critical Parameters for the Scale-Up Synthesis of Quantum Dots, Journal of Nanoscience and Nanotechnology 10 (2010) 6041–6045.
DOI: 10.1166/jnn.2010.2564
Google Scholar
[20]
J. Čech, S.A. Curran, D. Zhang, J.L. Dewald, A. Avadhanula, M. Kandadai, S. Roth, Functionalization of multi-walled carbon nanotubes: Direct proof of sidewall thiolation, physica status solidi (b) 243 (2006) 3221–3225.
DOI: 10.1002/pssb.200669102
Google Scholar
[21]
Y. Zhou, F.S. Riehle, Y. Yuan, H. -F. Schleiermacher, M. Niggemann, G.A. Urban, M. Krüger, Improved efficiency of hybrid solar cells based on non-ligand-exchanged CdSe quantum dots and poly(3-hexylthiophene), Applied Physics Letters 96 (2010).
DOI: 10.1063/1.3280370
Google Scholar