Electrochemical Performance of Sol-Gel Derived Hexagonal LiMnBO3 Cathode Material for Lithium-Ion Batteries

Article Preview

Abstract:

An attempt has been made to synthesize hexagonal LiMnBO3 (h-LMB) through sol-gel technique. The synthesized h-LiMnBO3 have been examined for their physical and electrochemical characteristics by X-ray diffraction analysis (XRD) and Thermal analysis (TG), Scanning electron microscopy (SEM), Raman spectroscopy as well as through charge –discharge cycling. XRD results revealed the existence of hexagonal polymorphs with P6 space group. Stability of h-LiMnBO3 material is analyzed by thermal analysis. SEM image shows spherical shape nanoparticle with the average diameter 50 nm. Raman spectroscopy result indicates the presence of Mn-O vibration. An electrochemical study indicates the sol-gel derived hexagonal LiMnBO3 delivers a first charging capacity of 97.5 mAh g-1 and discharging capacity of 55. 85 mAh g-1 within the potential window of 2V-4.5 V at C/10 rate and retaining a reversible discharge capacity of 42.71 mAh g-1 at the 10th cycle.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

106-112

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Larcher and J.M. Towards greener and more sustainable batteries for electrical energy storage, Tarascon Nature Chemistry, 7 (2015) 19–29.

DOI: 10.1038/nchem.2085

Google Scholar

[2] J.M. Tarascon and M. Armand, review article Issues and challenges facing rechargeable lithium batteries, Nature, 414 (2001) 359-367.

DOI: 10.1038/35104644

Google Scholar

[3] John B. Goodenough and Kyu-Sung Park, The Li-Ion Rechargeable Battery: A Perspective, J. Am. Chem. Soc, 135 (2013) 1167–1176.

DOI: 10.1021/ja3091438

Google Scholar

[4] Rotem Marom, S. Francis Amalraj, Nicole Leifer, David Jacob and Doron Aurbach, A review of advanced and practical lithium battery materials, J. Mater. Chem., 21 (2011) 9938-9954.

DOI: 10.1039/c0jm04225k

Google Scholar

[5] Naoki Nitta Feixiang, Wu Jung Tae Lee and Gleb Yushin, Li-ion Battery Materials: Present and Future, Materials Today, 18 (2015) 252-264.

DOI: 10.1016/j.mattod.2014.10.040

Google Scholar

[6] Chaofeng Liu, Zachary G. Neale and Guozhong Cao, Understanding electrochemical potentials of cathode materials in rechargeable batteries, Materials Today Volume 19, Materials Today, 19, (2016) 109.

DOI: 10.1016/j.mattod.2015.10.009

Google Scholar

[7] Zhengliang Gong and Yong Yang, Recent advances in the research of polyanion-type cathode materials for Li-ion batteries, Energy Environ. Sci., 4 (2011) 3223.

DOI: 10.1039/c0ee00713g

Google Scholar

[8] Christian M. Julien, Alain Mauger, Karim Zaghib and Henri Groult, Comparative Issues of Cathode Materials for Li-Ion Batteries, Inorganics 2, (2014) 132.

DOI: 10.3390/inorganics2010132

Google Scholar

[9] V. Aravindan, K. Karthikeyan, S. Ameresh and Y. S Lee, LiMnBO3/C: A Potential Cathode Material for Lithium Batteries, Bull. Korean chem. Soc 31 (2010) 1506.

Google Scholar

[10] Li S, Xu L, Li G, Wang M and Zhai Y, Performance degradation of a direct borohydride fuel cell, J Power Sources 236 (2013) 54.

Google Scholar

[11] Barpanda P, Dwibedi D, Ghosh S, Kee Y and Okada, Lithium metal borate (LiMBO3) family of insertion materials for Li-ion batteries: a sneak peak, S Ionics 21 (2015) 1801.

DOI: 10.1007/s11581-015-1463-6

Google Scholar

[12] Kim JC, Seo DH, Chen H and Ceder G, The Effect of Antisite Disorder and Particle Size on Li Intercalation Kinetics in Monoclinic LiMnBO3, Adv Energy Mater 5, (2015), 1401916.

DOI: 10.1002/aenm.201401916

Google Scholar

[13] V. Legagneur, Y. An, A. Mosbah, R. Portal, A. Le Gal La Salle, A. Verbaere, D. Guyomard and Y. Piffard, LiMBO3 (M=Mn, Fe, Co): synthesis, crystal structure and lithium deinsertion/insertion properties, Solid State Ionics 139 (2001) 37.

DOI: 10.1016/s0167-2738(00)00813-4

Google Scholar

[14] Ling Chen, Yanming Zhao, Xiaoning An, Jianmin Liu, Youzhong Dong, Yinghua Chen, Quan Kuang Ling Chen and Yanming Zhao, J. Alloy. Compd, 494 (2010) 415-419.

Google Scholar

[15] Shouli Li, Liqiang Xu, Guangda Li, Meng Wang, Yanjun Zhai, Performance degradation of a direct borohydride fuel cell, J. Power Sources 236 (2013) 54-60.

Google Scholar

[16] P. Barpanda Y. Yamashita S.C. Chung, Y. Yamada S. Nishimura and A. Yamada Sodium iron pyrophosphate: A novel 3. 0 V iron-based cathode for sodium-ion batteries, ECS Trans, 24 (2013) 116-119.

DOI: 10.1016/j.elecom.2012.08.028

Google Scholar

[17] Dong-Hwa Seo, Young-Uk Park, Sung-Wook Kim, Inchul Park, R. A. Shakoor and Kisuk Kang, First-principles study on lithium metal borate cathodes for lithium rechargeable batteries, Phys. Rev B, 83 (2011) 205127.

DOI: 10.1103/physrevb.83.205127

Google Scholar

[18] Semih Afyon, Christian Mensing, Frank Krumeich, Reinhard Nesper, The electrochemical activity for nano-LiCoBO3 as a cathode material for Li-ion batteries, Solid State Ionics, 256 (2014) 103-108.

DOI: 10.1016/j.ssi.2014.01.010

Google Scholar

[19] Yong-Suk Lee and  Hyukjae Lee, Structure and electrochemical behavior of LiMnBO3 synthesized at various temperatures, Electron Mater Lett, (2014) 253- 258.

DOI: 10.1007/s13391-013-3170-7

Google Scholar

[20] Y. -S. Lee and H. Lee, Structure and electrochemical behavior of LiMnBO3 synthesized at various temperatures, J Ceram Process Res, 13, (2012) 253-258.

Google Scholar

[21] Rui Ma Lianyi Shao Kaiqiang Wu Mengmeng Lao Miao Shui Cheng Chen Dongjie Wang Nengbing Long Yuanlong Ren Jie Shu, A New Look at Lithium Cobalt Oxide in a Broad Voltage Range for Lithium-Ion Batteries, Ceram. Int 39 (2013) 3323-3328.

DOI: 10.1021/jp911994b

Google Scholar

[22] Kun-Jae Lee, Lee-Seung Kang, Sunghyun Uhm, Jae Sik Yoon, Dong-Wan Kim and Hyun Seon Hong, Synthesis and characterization of LiMnBO3 cathode material for lithium ion batteries, Curr. Appl. Phy, 13 (2013) 1440.

DOI: 10.1016/j.cap.2013.04.027

Google Scholar

[23] Kaliyappan Karthikeyan and Yun Sung Lee, Microwave synthesis of high rate nanostructured LiMnBO3 with excellent cyclic behavior for lithium ion batteries, RSC Adv., 4 (2014) 31851.

DOI: 10.1039/c4ra04400b

Google Scholar

[24] Ting Ma, Arzugul Muslim and Zhi Su, Microwave synthesis and electrochemical properties of lithium manganese borate as cathode for lithium ion batteries J. Power Sources, 282 (2015) 95.

DOI: 10.1016/j.jpowsour.2015.02.013

Google Scholar

[25] Anping Tang, Donghua He, Zeqiang He, Guorong Xu, Haishen Song and Ronghua Peng, Electrochemical performance of LiMnBO3/C composite synthesized by a combination of impregnation and precipitation followed by annealing, J. Power Sources 275 (2015).

DOI: 10.1016/j.jpowsour.2014.11.087

Google Scholar

[26] Semih Afyon, Dipan Kundu, Frank Krumeich and Reinhard Nesper, A low dimensional composite of hexagonal lithium manganese borate (LiMnBO3), a cathode material for Li-ion batteries, J. Power Sources, 224 (2013) 145.

DOI: 10.1016/j.jpowsour.2012.09.099

Google Scholar

[27] Anping Tang, Donghua He, Jie Shen, Guorong Xiu and Ronghua Peng, Improved Synthesis of Graphene Oxide 59, 63 ECS Trans, (2014).

Google Scholar