Investigations on Hydrothermally Prepared Tin Mono-Sulphide Nanoparticles

Article Preview

Abstract:

Optically active, tin mono-sulphide (SnS) nanoparticles, having generic name herzenbergite, being one of the narrow band gap IV–VI semiconductors, geared up recently the attention of material scientists for its applications in photovoltaics, near-infrared detectors, and biomedical applications where strong scientific information on infrared absorption is required. Among the class of chalcopyrite semiconductors, SnS is a relatively inexpensive and non-toxic material with the nature of resource abundance for solar cell applications, having a bulk direct band gap of 1.3 eV and indirect bandgap of 1.1 eV, possessing high figure of merit such as optimum optical band gap, high optical absorption coefficient for photons and high photoelectric conversion efficiency of up to 25%. In the present work, nanostructured SnS particles of 11.75 nm were synthesized by means of a cinch hydrothermal reaction using the reagents tin chloride pentahydrate and thiourea at 200°C. The crystallinity, purity, morphology, and structural featuresof as-prepared nanoparticles were characterized by Powder X-ray Diffraction (XRD), Transmission Electron Microscope (TEM), UV-visible spectroscopy (Uv-vis), Photoluminescence spectroscopy (PL) and Fourier Transform Infra-red Spectroscopy (FTIR). XRD measurements reveal the formation of well-crystallized orthorhombic tin mono-sulphide nanoparticles which may be considered as a distorted NaCl structure. TEM observations demonstrate the morphology of the nanoparticles. The FTIR examination confirmed the existence of the vital functional groups. Absorption spectrum showed that the nanoparticles have an extensive absorption array. The optical properties determined by Uv-vis and PL measurements show that the prepared SnS nanoparticles will be an ideal candidate for photovoltaic applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

79-87

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Mary Jaculine, C. Justin Raj, Hee-Je Kim, A. Jeya Rajendran, S. Jerome Das, Zinc stannate nanoflower (Zn2SnO4) photoanodes for efficient dye sensitized solar cells, Materials Science in Semiconductor Processing 25 (2014) 52-58.

DOI: 10.1016/j.mssp.2013.11.003

Google Scholar

[2] C. Justin Raj, M. B. Lincoln, and S. Jerome Das, Raj, Synthesis and characterization of doped lithium aluminate nanocrystalline particles by sol-gel method, Crystal Research and Technology, 43, no. 8 (2008): 823-827.

DOI: 10.1002/crat.200811165

Google Scholar

[3] Masoud Salavati-Niasari, Davood ghanbari, Fatemeh Davar, Shape selective hydrothermal synthesis of tin sulfide nanoflowers based on nanosheets in the presence of thioglycolic acid, Journal of Alloys and Compounds, 492 1 (2010) 570-575.

DOI: 10.1016/j.jallcom.2009.11.183

Google Scholar

[4] P. Balaz, L. Takacs, T. Ohtani, D.E. Mack, E. Boldizarova, V. Soika, M. Achimovicova, Properties of a new nanosized tin sulphide phase obtained by mechanochemical route, Journal of alloys and compounds 337 1 (2002) 76-82.

DOI: 10.1016/s0925-8388(01)01910-7

Google Scholar

[5] Subhajit Biswas, Soumitra Kar, Subhadra Chauduri, Thioglycolic acid (TGA) assisted hydrothermal synthesis of SnS nanorods and nanosheets, Applied Surface Science 253 23 (2007) 9259-9266.

DOI: 10.1016/j.apsusc.2007.05.053

Google Scholar

[6] Xing-Long Gou, Jun Chen, Pan-Wen Shen, Gou, Synthesis, characterization and application of SnS x (x= 1, 2) nanoparticles, Materials Chemistry and Physics 93 2 (2005) 557-566.

DOI: 10.1016/j.matchemphys.2005.04.008

Google Scholar

[7] B. Subramanian, C. Sanjeeviraja, M. Jayachandran, Photoelectrochemical characteristics of brush plated tin sulfide thin films, Solar energy materials and solar cells 79 1 (2003) 57-65.

DOI: 10.1016/s0927-0248(02)00366-5

Google Scholar

[8] S. Sohila, M. Rajalakshmi, Chanchal Ghosh, A.K. Arora, C. Muthamizhchelvan, Optical and Raman scattering studies on SnS nanoparticles, Journal of Alloys and Compounds 509 19 (2011) 5843-5847.

DOI: 10.1016/j.jallcom.2011.02.141

Google Scholar

[9] Hongliang Zhu, Deren Yang, Hui Zhang, Hydrothermal synthesis, characterization and properties of SnS nanoflowers, Materials Letters 60 21 (2006) 2686-2689.

DOI: 10.1016/j.matlet.2006.01.065

Google Scholar

[10] Jiajia Ning, Kangkang Men, Guanjun Xiao, Li Wang, Quanqin Dai, Bo Zou, Bingbing Liu and Guangtian Zou, Facile synthesis of IV–VI SnS nanocrystals with shape and size control: nanoparticles, nanoflowers and amorphous nanosheets, Nanoscale 2 9 (2010).

DOI: 10.1039/c0nr00052c

Google Scholar

[11] Alok M, Tripathi, Sagar Mita, Tin sulfide (SnS) nanorods: structural, optical and lithium storage property study, Rsc Advances 4 20 (2014) 10358-10366.

DOI: 10.1039/c3ra46308g

Google Scholar

[12] ZhijieWang, Shengchun Qu, Xiangbo Zeng, Junpeng Liu, Changsha Zhang, Furui Tan, Lan Jin, ZhanguoWang, The application of SnS nanoparticles to bulk heterojunction solar cells, Journal of Alloys and Compounds 482. 1 (2009) 203-207.

DOI: 10.1016/j.jallcom.2009.03.158

Google Scholar

[13] S. Sohila, M. Rajalakshmi, C. Muthamizhchelvan, S. KAlavathi, Chanchal Ghosh, R. Divakar, C.N. Venkiteswaran, N.G. Muralidharan, A.K. Arora, E. Mohandas, Synthesis and characterization of SnS nanosheets through simple chemical route, Materials Letters 65 8 (2011).

DOI: 10.1016/j.matlet.2010.12.029

Google Scholar

[14] K.G. Deepa, J. Nagaraju, Growth and photovoltaic performance of SnS quantum dots, Materials Science and Engineering: B 177 13 (2012) 1023-1028.

DOI: 10.1016/j.mseb.2012.05.006

Google Scholar

[15] Jun Liu, Dongfeng Xue, Sn-based nanomaterials converted from SnS nanobelts: facile synthesis, characterizations, optical properties and energy storage performances, Electrochimica Acta 56 1 (2010) 243-250.

DOI: 10.1016/j.electacta.2010.08.091

Google Scholar

[16] Yingkai Liu, Dedong Hou, Guanghou Wang, Synthesis and characterization of SnS nanowires in cetyltrimethylammoniumbromide (CTAB) aqueous solution, Chemical physics letters 379 1 (2003) 67-73.

DOI: 10.1016/j.cplett.2003.08.014

Google Scholar

[17] M. Leach, K.T. Ramakrishna Reddy, M.V. Reddy, J.K. Tan, D.Y. Jang, R.W. Miles, Tin sulphide thin films synthesised using a two step process, Energy Procedia 15 (2012) 371-378.

DOI: 10.1016/j.egypro.2012.02.045

Google Scholar

[18] Yanbao Zhao, Zhijun Zhang, Hongxin Dang, Weimin Liu, Synthesis of tin sulfide nanoparticles by a modified solution dispersion method, Materials Science and Engineering: B 113 2 (2004) 175-178.

DOI: 10.1016/s0921-5107(04)00407-6

Google Scholar

[19] Y. Li, J.P. Tu , X.H. Huang, H.M. Wu, Y.F. Yuan, Net-like SnS/carbon nanocomposite film anode material for lithium ion batteries, Electrochemistry communications 9 1 (2007) 49-53.

DOI: 10.1016/j.elecom.2006.08.019

Google Scholar

[20] Yang Li, Huaqing Xie, Jiangping Tu, Nanostructured SnS/carbon composite for supercapacitor, Materials Letters 63 21 (2009): 1785-1787.

DOI: 10.1016/j.matlet.2009.05.036

Google Scholar

[21] Peisong Tang, Haifeng Chen, Feng Cao, Guoxiang Pan, Kunyan Wang, Minghong Xu, Yanhua Tong, Tang, Nanoparticulate SnS as an efficient photocatalyst under visible-light irradiation, Materials letters 65 3 (2011) 450-452.

DOI: 10.1016/j.matlet.2010.10.055

Google Scholar

[22] Xinlong Yan, Elizabeth Michael, Sridhar Komarneni, JeffreynR. Brownson, Zi-Feng Yan, Yan, Microwave-and conventional-hydrothermal synthesis of CuS, SnS and ZnS: optical properties, Ceramics International 39 5 (2013) 4757-4763.

DOI: 10.1016/j.ceramint.2012.11.062

Google Scholar

[23] S.A. Bashkirov, V.F. Gremenok, V.A. Ivanov, V.V. Lazenka, K. Bente, Tin sulfide thin films and Mo/p-SnS/n-CdS/ZnO heterojunctions for photovoltaic applications, Thin Solid Films 520 17 (2012): 5807-5810.

DOI: 10.1016/j.tsf.2012.04.030

Google Scholar

[24] Verma, A. R., and O. N. Srivastava. Crystallography applied to solid state physics. New Age International, (1991).

Google Scholar

[25] J. Emima Jeronsia, L. Allwin Joseph, M. Mary Jaculine, P. Annie Vinosha, S. Jerome Das, Hydrothermal synthesis of zinc stannate nanoparticles for antibacterial applications, Journal of Taibah University for Science 10 4 (2016) 601-606.

DOI: 10.1016/j.jtusci.2015.12.003

Google Scholar

[26] Peter P. Murmu, John Kennedy, Ben J. Ruck, Andreas Markwitz, Murmu, Characterization of the structural and electrical properties of ion beam sputtered ZnO films, In Materials Science Forum, 700 49-52. Trans Tech Publications, (2012).

DOI: 10.4028/www.scientific.net/msf.700.49

Google Scholar

[27] K. Raja, M. Mary Jaculine, M. Jose, Sunil Verma, A.A.M. Prince, K. Ilangovan, K. Sethusankar, S. Jerome Das, Sol–gel synthesis and characterization of α-Fe2O3 nanoparticles, Superlattices and Microstructures 86 (2015) 306-312.

DOI: 10.1016/j.spmi.2015.07.044

Google Scholar

[28] Yu Wang and Hao Gong, Low temperature synthesized quaternary chalcogenide Cu2ZnSnS4 from nano-crystallite binary sulphides, Journal of the Electrochemical Society 158 8 (2011) H800-H803.

DOI: 10.1149/1.3598168

Google Scholar

[29] D.J. Vidhya Raj, C. Justin Raj, S. Jerome Das, Synthesis and optical properties of cerium doped zinc sulfide nano particles, Superlattices and Microstructures 85 (2015) 274-281.

DOI: 10.1016/j.spmi.2015.04.029

Google Scholar

[30] J. Zhan, X. Yang, D. Wang, S. Li, Y. Xie, Y. Xia, Y.T. Qian, Polymer-controlled growth of CdS nanowires, Advanced Materials 12 18 (2000) 1348-1351.

DOI: 10.1002/1521-4095(200009)12:18<1348::aid-adma1348>3.0.co;2-x

Google Scholar