p.31
p.37
p.44
p.55
p.62
p.72
p.79
p.88
p.96
Computational Study of Au Doped Cu Nano Alloy Clusters
Abstract:
Among several bimetallic nanoclusters, the compounds formed between Cu-Au have gained immense importance due to its remarkable optical, mechanical, electronic and catalytic behaviors. Density Functional Theory (DFT) is one of the most successful and popular approaches of quantum mechanics to explore electronic properties of materials. Conceptual DFT based descriptors have become indispensable tools for analyzing and correlating the experimental properties of compounds. In this venture, we have successfully investigated the physico-chemical properties of Au doped Cu nanoclusters invoking DFT methodology. Our results reveal that computed HOMO-LUMO gap of CunAu (n=1-7) nanoalloy clusters show pronounced even-odd alternation behavior. A close agreement between experimental and our computed data is observed.
Info:
Periodical:
Pages:
62-71
Citation:
Online since:
August 2017
Authors:
Price:
Сopyright:
© 2017 Trans Tech Publications Ltd. All Rights Reserved
Citation:
* - Corresponding Author
[1] A. Z. Khosousi and A. A. Dhirani, Charge transport in nanoparticle assemblies, Chem. Rev. 108 (2008) 4072-4124.
DOI: 10.1021/cr0680134
[2] M. C. Daniel and D. Astruc, Gold nanoparticles: assembly, supermolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev. 104 (2004) 293-346.
DOI: 10.1021/cr030698+
[3] S. K. Ghosh and T. Pal, Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications, Chem. Rev. 107 (2007) 4797-4862.
DOI: 10.1021/cr0680282
[4] R. G. Chaudhuri and S. Paria, Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications, Chem. Rev. 112 (2012) 2373-2433.
DOI: 10.1021/cr100449n
[5] A. P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots, Science 271 (1996) 933-937.
[6] H. Q. Wang, X. Y. Kuang and H. F. Li, Density functional study of structural and electronic properties of bimetallic copper-gold clusters: comparison with pure and doped gold clusters, Phys. Chem. Chem. Phys. 12 (2010) 5156-5165.
DOI: 10.1039/b923003c
[7] R. Ismail, Theoretical studies of free and supported nanoalloy clusters, Ph.D. Thesis, University of Birmingham, UK (2012).
[8] A. Roucoux, J. Schulz, and H. Patin, Reduced transition metal colloids: a novel family of reusable catalysts?, Chem. Rev. 102 (2002) 3757-3778.
DOI: 10.1021/cr010350j
[9] B. M. Munoz-Flores, B. I. Kharisov, V. M. Jimenez-Perez, P. E. Martinez and S. T. Lopez, Recent advances in the synthesis and main applications of metallic nanoalloys, Ind. Eng. Chem. Res. 50 (2011) 7705-7721.
DOI: 10.1021/ie200177d
[10] R. W. Murray, Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores, Chem. Rev. 108 (2008) 2688-2720.
DOI: 10.1021/cr068077e
[11] F. Yin, Z. W. Wang and R. E. Palmer, Formation of bimetallic nanoalloys by Au coating of size-selected Cu clusters, J. Nanopart. Res. 14 (2012) 1124.
[12] X. Teng, Q. Wang, P. Liu, W. Han, A. I. Frenkel, M. N. Wen, J. C. Hanson and J. A. Rodriguez, Formation of Pd/Au nanostructures from Pd nanowires via galvanic replacement reaction, J. Am. Chem. Soc., 130 (2008) 1093-1101.
DOI: 10.1021/ja077303e
[13] R. Ferrando, J. Jellinek and R. L. Johnston, Nanoalloys: from theory to applications of alloy clusters and nanoparticles, Chem. Rev. 108 (2008) 845-910.
DOI: 10.1021/cr040090g
[14] A. Henglein, Physicochemical properties of small metal particles in aqueous solution, J. Phys. Chem. 97 (1993) 5457-5471.
DOI: 10.1021/j100123a004
[15] S. C. Davis and K. J. Klabunde, Unsupported small metal particles: preparation, reactivity and characterization, Chem. Rev. 82 (1982) 153-208.
DOI: 10.1021/cr00048a002
[16] L. N. Lewis, Chemical catalysis by colloids and clusters, Chem. Rev. 93(1993) 2693-2730.
[17] G. Schmid, Large clusters and colloids. Metal in the embryonic state, Chem. Rev. 92(1992) 1709-1727.
DOI: 10.1021/cr00016a002
[18] G. Schon and U. Simon, A fascinating new field in colloid science: small ligand-stabilized metal clusters and possible application in microelectronics, Colloid. Polym. Sci. 273 (1995) 101-117.
DOI: 10.1007/bf00654007
[19] H. Y. Oderji and H. Ding, Determination of melting mechanism of Pd24Pt14 nanoalloy by multiple histogram method via molecular dynamics simulations, Chem. Phys. 388 (2011) 23-30.
[20] H. B. Liu, U. Pal, A. Medina, C. Maldonado and J. A. Ascencio, Structural incoherency and structure reversal in bimetallic Au-Pd nanoclusters, Phys. Rev. B 71, 075403 (2005).
[21] F. Baletto and R. Ferrando, Structural properties of nanoclusters: Energetic, thermodynamic and kinetic effects, Rev. Mod. Phys. 77 (2005) 371-423.
[22] J. A. Alonso, Electronic and atomic structure, and magnetism of transition-metal clusters, Chem. Rev. 100 (2000) 637-678.
DOI: 10.1021/cr980391o
[23] I. Katakuse, T. Ichihara, Y. Fujita, T. Matsuo, T. Sakurai and H. Matsuda, Mass distributions of copper, silver and gold clusters and electronic shell structure, Int. J. Mass Spectrom. Ion Processes 67 (1985) 229-236.
[24] I. Katakuse, T. Ichihara, Y. Fujita, T. Matsuo, T. Sakurai and H. Matsuda, Mass distributions of negative cluster ions of copper, silver and gold, Int. J. Mass Spectrom. Ion Processes 74 (1986) 33-41.
[25] W. A. D. Heer, The physics of simple metal clusters: experimental aspects and simple models, Rev. Mod. Phys., 65 (1993) 611-676.
[26] G. Gantefor, M. Gausa, K. H. Meiwes-Broer and H. O. Lutz, Photoelectron spectroscopy of silver and palladium cluster anions. Electron delocalization versus, localization, J. Chem. Soc., Faraday Trans. 86 (1990) 2483-2488.
DOI: 10.1039/ft9908602483
[27] D. G. Leopold, J. Ho and W. C. Lineberger, Phoelectron spectroscopy of mass-selected metal cluster anions.I. Cun-, n=1-10, J. Chem. Phys. 86 (1987) 1715-1726.
DOI: 10.1063/1.452170
[28] A. Lattes, I. Rico, A. D. Savignac and A. A. Z. Samii, Formamide, a water substitute in micelles and micromulsions xxx structural analysis using a diels-alder reaction as a chemical probe, Tetrahedron 43 (1987) 1725-1735.
[29] F. Chen, G. Q. Xu and T. S. A. Hor, Preparation and assemble of colloidal gold nanoparticles in CTAB-stabilized reverse microemulsion, Mater. Lett. 57 (2003) 3282-3286.
[30] A. Taleb, C. Petit and M. P. Pileni, Optical properties of self-assembled 2D and 3D superlattices of silver nanoparticles, J. Phys. Chem. B 102 (1998) 2214-2220.
DOI: 10.1021/jp972807s
[31] H. Q. Liu, Y. Tian and P. P. Xia, Pyramidal, rodlike, spherical gold nanostructures for direct electron transfer of copper, zinc-superoxide dismutase: application to superoxide anion biosensors, Langmuir 24 (2008) 6359-6366.
DOI: 10.1021/la703587x
[32] K. J. T. Noonan, B. H. Gillon, V. Cappello and D. P. Gates, Phosphorus-containing block copolymer templates can control the size and shape of gold nanostructures, J. Am. Chem. Soc. 130 (2008) 12876-12877.
DOI: 10.1021/ja805076y
[33] T. Wang, X. G. Hu and S. J. Dong, Surfactantless synthesis of multiple shapes of gold nanostructures and their shape-dependent SERS spectroscopy, J. Phys. Chem. B 110 (2006) 16930-16936.
DOI: 10.1021/jp062486x
[34] C. Majumder, A. K. Kandalam and P. Jena, Structure and bonding of Au5M (M=Na, Mg, Al, Si, P and S) clusters, Phys. Rev. B: Condens. Matter. Mater. Phys. 74 (2006) 205437.
[35] X. Li, B. Kiran, L. F. Cui and L. S. Wan, Magnetic properties in transition-metal-doped gold clusters: M@Au6 (M=Ti, V, Cr), Phys. Rev. Lett. 95 (2005) 253401.
[36] M. B. Torres, E. M. Fernandez and L. C. Balbas, Theoretical study of oxygen adsorption on pure Aun+1+ and doped MAun+ cationic gold clusters for M=Ti, Fe and n=3-7, J. Phys. Chem. A 112 (2008) 6678-6689.
[37] J. H. Teles, S. Brode and M. Chabanas, Cationic gold (I) complexes: highly efficient catalysis for the addition of alcohols to alkynes, Angew. Chem. 110 (1998) 1475-1478.
DOI: 10.1002/(sici)1521-3773(19980605)37:10<1415::aid-anie1415>3.0.co;2-n
[38] M. Valden, X. Lai and D. W. Goodman, Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties, Science 281 (1998) 1647-1650.
[39] B. Yoon, H. Hӓkkinen, U. Landman, A. S. Wörz, J. –M. Antonietti, S. Abbet, K. Judai and U. Heiz, Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO, Science 307 (2005) 403-407.
[40] R. McRae, B. Lai, S. Vogt and C. J. Fahrni, Correlative microXRF and optical immunofluorescence microscopy of adherent cells labeled with ultrasmall gold particles, J. Struct. Biol. 155 (2006) 22-29.
[41] C. J. Ackerson, P. D. Jadzinsky, G. J. Jensen and R. D. Kornberg, Rigid, specific and discrete gold nanoparticle/antibody conjugates, J. Am. Chem. Soc. 128 (2006) 2635-2640.
DOI: 10.1021/ja0555668
[42] C. F. Shaw III, Gold-based therapeutic agents, Chem. Rev. 99 (1999) 2589-2600.
[43] M. Kabir, A. Mookerjee and A. K. Bhattacharya, Copper clusters: electronic effect dominates over geometric effect, Eur. Phys. J. D 31 (2004) 477-485.
[44] C. J. Heard and R. L. Johnston, A density functional global optimization study of neutral 8-atom Cu-Ag and Cu-Au clusters, Eur. Phys. J. D 67 (2013) 30601-30607.
[45] H. Hakkinen, M. Moseler and U. Landman, Supported magnetic nanoclusters: soft landing of Pd clusters on a MgO surface, Phys. Rev. Lett. 89 (2002) 176103.
[46] C. Massobrio, A. Pasquarello and R. Car, Structural and electronic properties of small copper clusters: a first principles study, Chem. Phys. Lett. 238 (1995) 215-221.
[47] J. C. Bauer, D. Mullins, M. Li, Z. Wu, E. A. Payzant, S. H. Overbury and S. Dai, Synthesis of silica supported AuCu nanoparticle catalysts and the effects of pretreatment conditions for the CO oxidation reaction, Phys. Chem. Chem. Phys. 13 (2011).
DOI: 10.1039/c0cp01859g
[48] W. Bouwen, F. Vanhoutte, F. Despa, S. Bouckaert, S. Neukermans, K. L. Theil, H. Weidele, P. Lievens and R. E. Silverans, Stability effects of AunXm+ (X=Cu, Al, Y, In) clusters, Chem. Phys. Lett. 314 (1999) 227-233.
[49] C. L. Bracey, P. R. Ellis and G. J. Hutchings, Application of copper-gold alloy in catalysis: current status and future perspectives, Chem. Soc. Rev. 38 (2009) 2231-2243.
DOI: 10.1039/b817729p
[50] W. Chen, R. Yu, L. Li, A. Wang, Q. Peng and Y. Li, A seed-based diffusion route to monodisperse intermetallic CuAu nanocrystals, Angew. Chem. Int. Ed. 49 (2010) 2917-2921.
[51] X. Liu, A. Wang, L. Li, T. Zhang, C. Mou and J. Lee, Structural changes of Au-Cu bimetallic catalysts in CO oxidation: in situ XRD, EPR, XANES, and FT-IR characterizations, J. Catal 278 (2011) 288-296.
[52] C. N. R. Rao, G. U. Kulkarni, P. J. Thomas and P. P. Edwards, Metal nanoparticles and their assemblies, Chem. Soc. Rev. 29 (2000) 27-35.
[53] B. Pauwels, G. V. Tendeloo, E. Zhurkin, M. Hou, G. Verschoren, L. T. Kuhn, W. Bouwen and P. Lievens, Transmission electron microscopy and monte carlo simulations of ordering in Au-Cu clusters produced in a laser vaporization source, Phys. Rev. B 63 (2001).
[54] A. K. Sra and R. E. Schaak, Synthesis of automatically ordered AuCu and AuCu3 nanocrystals from bimetallic nanoparticle precursors, J. Am. Chem. Soc. 126 (2004) 6667-6672.
DOI: 10.1021/ja031547r
[55] T. J. Toai, G. Rossi and R. Ferrando, Global optimization and growth simulation of AuCu clusters, Faraday Discuss. 138 (2008) 49-58.
DOI: 10.1039/b707813g
[56] H. Yasuda and H. Mori, Cluster-size dependence of alloying behavior in gold clusters, Z. Phys. D: At, Mol. Clusters 31 (1994) 131-134.
DOI: 10.1007/bf01426588
[57] F. Yin, Z. W. Wang and R. E. Palmer, Controlled formation of mass-selected Cu-Au core-shell cluster beams, J. Am. Chem. Soc. 133 (2011) 10325-10327.
DOI: 10.1021/ja201218n
[58] A. Rapallo, G. Rossi, R. Ferrando, A. Fortunelli, B. C. Curley, L. D. Lloyd, G. M. Tarbuck and R. L. Johnston, Global optimization of bimetallic cluster structures.I. Size-mismatched Ag-Cu, Ag-Ni, and Au-Cu systems, J. Chem. Phys. 122 (2005).
DOI: 10.1063/1.1898223
[59] A. M. Molenbroek, J. K. Norskov and B. S. Clausen, Structure and reactivity of Ni-Au nanoparticle catalysts, J. Phys. Chem. B 105 (2001) 5450-5458.
DOI: 10.1021/jp0043975
[60] C. J. Cramer and D. G. Truhlar, Density functional theory for transition metals and transition metal chemistry, Phys. Chem. Chem. Phys. 11 (2009) 10757-10816.
DOI: 10.1039/b907148b
[61] O. J. Wacker, R. Kümmel and E. K. U. Gross, Time-dependent density-functional theory for superconductors, Phys. Rev. Lett. 73 (1994) 2915-2918.
[62] F. Illas and R. L. Martin, Magnetic coupling in ionic solids studied by density functional theory, J. Chem. Phys. 108 (1998) 2519-2527.
DOI: 10.1063/1.475636
[63] S. Kümmel and M. Brack, Quantum fluid dynamics from density-functional theory, Phys. Rev. A 64 (2001) 022506.
[64] R. Car and M. Parrinello, Unified approach for molecular dynamics and density-functional theory, Phys. Rev. Lett. 55 (1985) 2471-2474.
[65] M. Koskinen, P. Lipas and M. Manninen, Unrestricted shapes of light nuclei in the local-density approximation: Comparison with jellium clusters, Nucl. Phys. A 591 (1995) 421-434.
[66] R. N. Schmid, E. Engel and R. M. Dreizler, Density functional approach to quantum hadrodynamics: Local exchange potential for nuclear structure calculations, Phys. Rev. C 52 (1995) 164-169.
[67] R. G. Parr and W. Yang, density functional theory of the electronic structure of molecules, Annu. Rev. Phy. Chem. 46 (1995) 701-728.
[68] W. Kohn, A. D. Becke and R. G. Parr, Density functional theory of electronic structure, J. Phys. Chem. 100 (1996) 12974-12980.
DOI: 10.1021/jp960669l
[69] S. Liu and R. G. Parr, Second-order density-functional description of molecules and chemical changes, J. Chem. Phys., 106 (1997) 5578-5586.
DOI: 10.1063/1.473580
[70] T. Ziegler, Approximate density functional theory as a practical tool in molecular energetics and dynamics, Chem. Rev. 91(1991) 651-667.
DOI: 10.1021/cr00005a001
[71] R. G. Parr and W. Yang, Editor, Density Functional Theory of Atoms and Molecules, Oxford University Press, Oxford (1989).
[72] H. Chermette, Chemical reactivity indexes in density functional theory, J. Comput. Chem. 20 (1999) 129-154.
DOI: 10.1002/(sici)1096-987x(19990115)20:1<129::aid-jcc13>3.0.co;2-a
[73] P. Geerlings, F. D. Proft and W. Langenaeker, Conceptual density functional theory, Chem. Rev. Washington, D.C. 103 (2003) 1793-1873.
DOI: 10.1021/cr990029p
[74] P. Geerlings and F. D. Proft, Chemical reactivity as described by quantum chemical methods, Int. J. Mol. Sci. 3 (2002) 276-309.
DOI: 10.3390/i3040276
[75] P. Ranjan, S. Dhail, S. Venigalla, A. Kumar, L. Ledwani and T. Chakraborty, A theoretical analysis of bi-metallic (Cu-Ag)n=1-7 nano alloy clusters invoking DFT based descriptors, Mater. Sci. -Pol. 33 (2015) 719-724.
[76] P. Ranjan, S. Venigalla, A. Kumar and T. Chakraborty, Theoretical study of bi-metallic AgmAun (m+n=2-8) nano alloy clusters in terms of DFT based descriptors, New Front. Chem. 23 (2014) 111-122.
[77] S. Venigalla, S. Dhail, P. Ranjan, S. Jain and T. Chakraborty, Computational study about cytotoxixity of metal oxide nanoparticles invoking Nano-QSAR technique, New Front. Chem. 23 (2014) 123-130.
[78] P. Ranjan, A. Kumar and T. Chakraborty, Computational study of AuSin (n=1-9) nanoalloy clusters invoking DFT based descriptors, AIP Conf. Proc. 1724, (2016) 020072.
DOI: 10.1063/1.4945192
[79] P. Ranjan, A. Kumar and T. Chakraborty, Theoretical analysis: Electronic and optical properties of gold-silicon nanoalloy clusters, Mat. Today Proc. 3, (2016) 1563-1568.
[80] P. Ranjan, A. Kumar and T. Chakraborty, Computational study of nanomaterials invoking DFT based descriptors, in Environmental Sustainability: Concepts, Principles, Evidences and Innovations, Edited G. C. Mishra, Excellent Publishing House, New Delhi (2014).
[81] P. Ranjan, S. Venigalla, A. Kumar and T. Chakraborty, A theoretical analysis of bi-metallic AgAun (n=1-7) nano alloy clusters invoking DFT based descriptors, in Recent Methodology in Chemical Sciences: Experimental and Theoretical Approaches, Edited T. Chakraborty and L. Ledwani, Apple Academic Press and CRC Press, USA (2015).
[82] Gaussian 03, Revision C. 02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT (2004).
[83] R. O. Jones and O. Gunnarsson, The density functional formalism, its applications and prospects, Rev. Mod. Phys. 61(1989) 689-746.
[84] A. Zupan, P. Blaha, K. Schwarz and J. P. Perdew, Pressure-induced phase transitions in solid Si, SiO2, and Fe: Performance of local-spin-density and generalized-gradient-approximation density functionals, Phys. Rev. B 58 (1998) 11266-11272.
[85] J. Theilhaber, Quantum-molecular-dynamics simulations of liquid metals and highly degenerate plasmas, Phys. Fluids B 4 (1992) 2044-(2051).
DOI: 10.1063/1.860013
[86] R. Stadler and M. J. Gillan, First-principles molecular dynamics studies of liquid tellurium, J. Phys.: Condens. Matter 12 (2000) 6053-6061.
[87] N. Argaman and G. Makov, Density functional theory: An introduction, Am. J. Phys. 68 (2000) 69-79.
[88] H. Xiao, J. T. Kheli, W. A. Goddard III, Accurate band gaps for semiconductors from density functional theory, J. Phys. Chem. Lett. 2 (2011) 212-217.
DOI: 10.1021/jz101565j
[89] K. P. Huber and G. Herzberg, Constraints of Diatomic Molecules, Van Nostrand Reinhold Company, New York (1979).
[90] V. Beutel, H. G. Kramer, G. L. Bhale, M. Kuhn, K. Weyers and W. Demtroder, High resolution isotope selective laser spectroscopy of Ag2 molecules, J. Chem. Phys. 98 (1993) 2699-2708.
DOI: 10.1063/1.464151
[91] G. A. Bishea, J. C. Pinegar and M. D. Morse, The ground state and excited state d-hole states of CuAu, J. Chem. Phys. 95 (1991) 5630-5636.
DOI: 10.1063/1.461638