Study on the Effect of Ball Milling on Dielectric and Thermal Behaviour of High Performance Polymer Composites

Article Preview

Abstract:

The synthesis of electrolytic grade iron (Fe) nanopowder was done by using planetary ball milling. It was found that the average crystallite size of the iron powder after 20 h milling was 32 nm. The high performance polymeric composites based on poly (aryletherketone) (PAEK) as a matrix and Fe as filler were prepared by planetary ball milling followed by hot pressing. Composites containing 50 wt.% Fe particles with varying milling time (0 to 20 h) were prepared. Scanning electron microscopy showed that the Fe particles are well dispersed in the PAEK matrix. The dielectric constant of the PAEK/Fe (50 wt.%) composite increased with ball milling time up to 5 h thereafter it decreased on further increasing the milling time. It was also found that the 10 % weight loss (T10) degradation temperature and the maximum degradation temperatures of the composites were above 530 °C. However, for a given composite, these temperatures were found to decrease with increasing ball milling time.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

72-78

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Zois, L. Apekis, Y.P. Mamunya, Dielectric properties and morphology of polymer composites filled with dispersed iron, J. Appl. Polym. Sci. 88 (2003) 3013-3020.

DOI: 10.1002/app.12118

Google Scholar

[2] R.K. Goyal, D. Vaishnav, Thermal and Dielectric Properties of High Performance Polymer/ZnO Nanocomposites, Material Science and Engineering, 64 (2014) 012016.

DOI: 10.1088/1757-899x/64/1/012016

Google Scholar

[3] M. Karttunen, P. Ruuskanen, Ville Pitkanen, Willem M. Albers, Electrically Conductive Metal Polymer Nanocomposites for Electronics Applications J. Elec. Mater. 37 (2008) 951-954.

DOI: 10.1007/s11664-008-0451-2

Google Scholar

[4] R.K. Goyal, V.V. Madan, P.R. Pakankar, S.P. Butee, Fabrication and properties of novel polyetheretherketone/barium titanate composites with low dielectric loss, J. Elec Mater, 40(2011) 2240-2247.

DOI: 10.1007/s11664-011-1743-5

Google Scholar

[5] Y.P. Mamunya, Y.V. Muzychenko, P. Pissis, E.V. Lebedev, M. I. Shut, Percolation phenomena in polymers containing dispersed iron, Polym. Eng. Sci., 42 (2002) 90-100.

DOI: 10.1002/pen.10930

Google Scholar

[6] R.K. Goyal, K.R. Kambale, S.S. Nene, B.S. Selukar, S Arbuj, U.P. Mulik, Fabrication, thermal and electrical properties of polyphenylene sulphide/copper composites Mater. Chem. Phys. 128 (2011) 114-120.

DOI: 10.1016/j.matchemphys.2011.02.065

Google Scholar

[7] K.V. Mahesh, S. Balanand, R. Raimond, A. Peer Mohamad, S. Ananthakumar, Polyaryletherketone polymer nanocomposite engineered with nanolaminated Ti3SiC2 ceramic fillers, Mater. Design. 63 (2014) 360-367.

DOI: 10.1016/j.matdes.2014.06.034

Google Scholar

[8] P. Markondeya Raj, H. Sharma, G.P. Reddy, N. Altunyurt, M. Swaminathan, R. Timmala, V. Nair, Cobalt-Polymer Nanocomposite Dielectrics for Miniaturized Antennas J. Elec. Mater. 43 (2014) 1097-1106.

DOI: 10.1007/s11664-014-3025-5

Google Scholar

[9] F.S. Al-Aqrabawi, A.M. Zihlif, Z.M. Elimat, G. Ragosta, Effect of particles size on the AC electrical behavior of iron/polystyrene composites, J. Mater. Sci: Mater Electron 24 (2013) 1690-1695.

DOI: 10.1007/s10854-012-0997-x

Google Scholar

[10] Y.J. Li, M. Xu, J.Q. Feng, X.L. Cao, Y.F. Yu, Z.M. Dang, Effect of the matrix crystallinity on the percolation threshold and dielectric behavior in percolative composites, J. Appl. Polym. Sci. 106 (2007) 3359-3365.

DOI: 10.1002/app.26988

Google Scholar

[11] H. Sharma, S. Jain, P.M. Raj, K.P. Murli, R. Tummala, Magnetic and Dielectric Property Studies in Fe- and NiFe-Based Polymer Nanocomposites, J. Elec. Mater. 44 (2015) 3819-3826.

DOI: 10.1007/s11664-015-3801-x

Google Scholar

[12] J. Xu, C.P. Wong, Effect of the polymer matrices on the dielectric behavior of a percolative high-k polymer composite for embedded capacitor applications, J. Elec. Mater. 35 (2006) 1087-1094.

DOI: 10.1007/bf02692571

Google Scholar

[13] S. Pendse, R. K. Goyal, Disappearance of Curie Temperature of BaTiO3 Nanopowder Synthesised by High Energy Ball Mill, Journal of Materials Science & Surface Engineering, 4 (3) (2016) 383-385.

Google Scholar

[14] M. Feng, X. Huang, Z. Pu, X. Liu, Phase Diagrams and Interface in Inflating Balloon, J. Mater. Sci: Mater Electron 25 (2014) 1393-1399.

Google Scholar

[15] N. Qureshi, M. Shinde, R. Ratheesh, A. Bhalerao, B. Kale, U. Mulik, D.P. Amalnerkar, J. Elec. Mater. 44 (2015) 2269-2275.

DOI: 10.1007/s11664-015-3686-8

Google Scholar

[16] G.C. Psarras, E. Manolakaki, G.M. Tsangaris, Dielectric dispersion and ac conductivity in—Iron particles loaded—polymer composites, Composites Part A: Applied Science and Manufacturing 34 (2003) 1187-1198.

DOI: 10.1016/j.compositesa.2003.08.002

Google Scholar

[17] J. Li, Z. Pu, Z. Wang, Y. Long, K. Jia, X. Liu, High Dielectric Constants of Composites of Fiber-Like Copper Phthalocyanine-Coated Graphene Oxide Embedded in Poly (arylene Ether Nitriles), J. Elec. Mater. 44 (2015) 2378-2386.

DOI: 10.1007/s11664-015-3698-4

Google Scholar