[1]
Xia J., Jin W.-L., Li L.-Y. (2012) Effect of chloride-induced reinforcing steel corrosion on the flexural strength of reinforced concrete beams. Mag Concr Rese 64(6): 471-485.
DOI: 10.1680/macr.10.00169
Google Scholar
[2]
Imperatore S., Leonardi A., Rinaldi Z. (2016) Strength decay of RC sections for chloride attack. Intern J Structural Integrity 7(2): 194-212.
DOI: 10.1108/ijsi-09-2014-0043
Google Scholar
[3]
Dang V.H., François R., Coronelli D. (2015) Shear behaviour and load capacity of short reinforced concrete beams exposed to chloride environment. Eur J Environ Civ Eng 20(4): 379-395.
DOI: 10.1080/19648189.2015.1036129
Google Scholar
[4]
El-Sayed A.K., Hussain R.R., Shuraim A.B. (2016) Influence of stirrup corrosion on shear strength of reinforced concrete slender beams. ACI Struct J 113(6): 1223.
DOI: 10.14359/51689147
Google Scholar
[5]
Blomfors M., Zandi K., Lundgren K., Coronelli D. (2018) Engineering bond model for corroded reinforcement. Eng Sruct 156: 394-410.
DOI: 10.1016/j.engstruct.2017.11.030
Google Scholar
[6]
Coccia S., Imperatore S., Rinaldi Z. (2016) Influence of corrosion on the bond strength of steel rebars in concrete. Mater Struct 49 (1-2): 537-551.
DOI: 10.1617/s11527-014-0518-x
Google Scholar
[7]
Zanini M.A., Pellegrino C., Morbin R., Modena C. (2013) Seismic vulnerability of bridges in transport networks subjected to environmental deterioration. Bulletin of Earthquake Engineering 11(2): 561-579.
DOI: 10.1007/s10518-012-9400-9
Google Scholar
[8]
Castaldo P., Palazzo B., Mariniello A. (2017) Effects of the axial force eccentricity on the time-variant structural reliability of aging RC cross-sections subjected to chloride-induced corrosion. Eng Struct 130: 261-274.
DOI: 10.1016/j.engstruct.2016.10.053
Google Scholar
[9]
Bossio A., Fabbrocino F., Lignola G.P., Prota A., Manfredi G. (2017) Simplified model for strengthening design of beam–column internal joints in reinforced concrete frames. Polymers 7(9):1732-1754.
DOI: 10.3390/polym7091479
Google Scholar
[10]
Bossio A., Lignola G.P., Fabbrocino F., Monetta T., Prota A., Bellucci F., Manfredi G. (2017) Nondestructive assessment of corrosion of reinforcing bars through surface concrete cracks. Struct Concr 18(1): 104-117.
DOI: 10.1002/suco.201600034
Google Scholar
[11]
Bossio A., Montuori M., Bellucci F., Lignola G.P., Prota A., Cosenza E., Manfredi G. (2013) Indirect measure of corrosion level based on crack opening. J. Heritage Conservation 34: 36-40.
Google Scholar
[12]
Thomas M.D., Bamforth P.B. (1999) Modelling chloride diffusion in concrete effect of fly ash and slag, Cem Concr Res 29: 487–495.
Google Scholar
[13]
Win P.P, Watanabe M., Machida A. (2004) Penetration profile of chloride ion in cracked reinforced concrete. Cem Concr Res 34: 1073–1079.
DOI: 10.1016/j.cemconres.2003.11.020
Google Scholar
[14]
Collepardi M., Marcialis A., Turriziani R. (1972) Penetration of chloride ions into cement pastes and concretes. J Am Ceram Soc 55: 534–535.
DOI: 10.1111/j.1151-2916.1972.tb13424.x
Google Scholar
[15]
Zanini M.A., Faleschini F., Pellegrino C. (2017) Probabilistic seismic risk forecasting of aging bridge networks. Eng Struct 136: 219-232.
DOI: 10.1016/j.engstruct.2017.01.029
Google Scholar
[16]
Martin-Perez B., Zibara H., Hooton R.D., Thomas M.D.A (2000) A study of the effect of chloride binding on service life predictions, Cem Concr Res 30: 1215–1223.
DOI: 10.1016/s0008-8846(00)00339-2
Google Scholar
[17]
Faleschini F., Zanini M.A., Hofer L. (2018) Reliability-Based Analysis of Recycled Aggregate Concrete under Carbonation. Advances in Civil Engineering, ID 4742372, 11 pages.
DOI: 10.1155/2018/4742372
Google Scholar
[18]
Pellegrino C., Faleschini F. (2016). Recycled Aggregates for Concrete Production: State-of-the-Art. In: Sustainability Improvements in the Concrete Industry, Springer International Publishing Switzerland.
DOI: 10.1007/978-3-319-28540-5_2
Google Scholar
[19]
Khoury E., Ambrós W., Cazacliu B., Sampaio C. H., Remond S. (2018) Heterogeneity of recycled concrete aggregates, an intrinsic variability. Constr Build Mater 175: 705-713.
DOI: 10.1016/j.conbuildmat.2018.04.163
Google Scholar
[20]
Santamaría A., Faleschini F., Giacomello G., Brunelli K., San Josè J.-T., Pellegrino C., Pasetto M. (2018) Dimensional stability of electric arc furnace slag in civil engineering applications. J Cleaner Production 205: 599-609.
DOI: 10.1016/j.jclepro.2018.09.122
Google Scholar
[21]
Santamaría A., Faleschini F., Vegas I., San-José J.-T., Pellegrino C., Gonzalez J.J. (2017) A comparison between European electric arc furnace slags. In: Proceedings of the Euroslag 2017, Metz, France.
Google Scholar
[22]
Pellegrino C., Faleschini F. (2016) Electric Arc Furnace Slag Concrete. In: Sustainability Improvements in the Concrete Industry, Springer International Publishing Switzerland.
DOI: 10.1007/978-3-319-28540-5_4
Google Scholar
[23]
Faleschini F., Fernandez-Ruíz M.A., Zanini M.A., Brunelli K., Pellegrino C., Hernandez-Montes E. (2015) High performance concrete with electric arc furnace slag as aggregate: mechanical and durability properties. Construct. Build. Mater. 101: 113-121.
DOI: 10.1016/j.conbuildmat.2015.10.022
Google Scholar
[24]
Baroghel-Bouny V., Belin P., Maultzsch M., Henry D. (2007) AgNO3 spray tests: advantages, weaknesses, and various applications to quantify chloride ingress into concrete. Part 1: Non-steady-state diffusion tests and exposure to natural conditions. Mater Struct 40:759-781.
DOI: 10.1617/s11527-007-9233-1
Google Scholar
[25]
Manso J.M., Polanco J.A., Losañez M., González J.J. (2006) Durability of concrete made with EAF slag as aggregate, Cem. Concr. Compos. 28: 528–534.
DOI: 10.1016/j.cemconcomp.2006.02.008
Google Scholar
[26]
Tomellini R. (1999) Summary Report on RTD in Iron and Steel Slags: Development and Perspectives. Technical Steel Research, Report Prepared for the European Commission EUR 19066, Brussels, Belgium.
Google Scholar
[27]
Arribas I., Santamaría A., Ruiz E., Ortega-Lopez V., Manso J.M. (2015) Electric arc furnace slag and its use in hydraulic concrete. Construct. Build. Mater. 90: 68-79.
DOI: 10.1016/j.conbuildmat.2015.05.003
Google Scholar
[28]
EN 206-1 (2006) Concrete - Part 1: Specification, performance, production and conformity, Brussels, Belgium: Comité Europeen de Normalisation.
Google Scholar
[29]
Kırgız, M.S., Pulverized Fuel Ash Cement Activated by Nanographite,, ACI Materials, Vol. 115, No. 6, p.803–812, (2018).
DOI: 10.14359/51689101
Google Scholar
[30]
Kırgız, M.S., Green cement composite concept reinforced by graphite nano-engineered particle suspension for infrastructure renewal material, Composites Part B: Engineering, Vol. 154, No. 12, p.423–429, 2018.
DOI: 10.1016/j.compositesb.2018.09.012
Google Scholar
[31]
Kırgız, M.S., Advancements in Mechanical and Physical Properties for Marble Powder–Cement Composites Strengthened by Nanostructured Graphite Particles, Mechanics of Materials, Vol. 92, No.1, p.223–234, 2016.
DOI: 10.1016/j.mechmat.2015.09.013
Google Scholar
[32]
Kırgız, M.S., Supernatant Nanographite Solution for Advance Treatment of C Class Fly Ash–Cement Systems (Part 2),, ZKG International, No. 5, p.42–47, (2015).
Google Scholar
[33]
Kırgız, M.S., Supernatant Nanographite Solution for Advance Treatment of C Class Fly Ash–Cement Systems (Part 1),, ZKG International, No. 4, p.56–65, (2015).
Google Scholar
[34]
Kırgız, M.S., Advances in physical properties of C class fly ash–cement systems blended nanographite (Part 2),, ZKG International, No.1-2, p.60–67, (2015).
Google Scholar
[35]
Kırgız, M.S., Advances in physical properties of C class fly ash–cement systems blended nanographite (Part 1),, ZKG International, No.12, p.42–48, (2014).
Google Scholar
[36]
Chinchon-Paya S., Andrade C., Chinchon S. (2016) Indicator of carbonation front in concrete as substitute to phenolphthalein. Cem. Concr. Res. 82: 87-91.
DOI: 10.1016/j.cemconres.2015.12.010
Google Scholar
[37]
Villain G., Thiery M., Platret G. (2007) Measurement methods of carbonation profiles in concrete: thermogravimetry, chemical analysis and gammadensimetry. Cem. Concr. Res., 37: 1182-1192.
DOI: 10.1016/j.cemconres.2007.04.015
Google Scholar
[38]
Watanasrisin P., Supatnantakul K., Leelawat T. (2014) Three Colorimetric Methods for Evaluating Chloride Penetration of Cracked and Coated Concrete. International Conference on Chemical, Civil and Environmental Engineering (CCEE'2014) Nov 18-19, 2014 Singapore.
DOI: 10.15242/iicbe.c1114029
Google Scholar
[39]
Vazquez E., Barra M., Aponte D., Jiménez C., Valls S. (2014) Improvement of the durability of concrete with recycled aggregates in chloride exposed environment. Constr. Build. Mater. 67: 61-67.
DOI: 10.1016/j.conbuildmat.2013.11.028
Google Scholar
[40]
He F., Shi C., Yuan Q., Chen C., Zheng K. (2012) AgNO3-based colorimetric methods for measurement of chloride penetration in concrete. Constr. Build. Mater. 26(1): 1-8.
DOI: 10.1016/j.conbuildmat.2011.06.003
Google Scholar
[41]
Fernandez-Ruiz M.A., Gil-Martin L.M., Carbonell-Marquez J.F., Hernandez-Montes E. (2018) Epoxy resin and ground tyre rubber replacement for cement in concrete: Compressive behaviour and durability properties. Constr. Build. Mater. 173: 49-57.
DOI: 10.1016/j.conbuildmat.2018.04.004
Google Scholar
[42]
Alsaif A., Bernal S.A., Guadagnini M., Pilakoutas K. (2018) Durability of steel fibre reinforced rubberised concrete exposed to chlorides. Constr. Build. Mater. 108: 130-142.
DOI: 10.1016/j.conbuildmat.2018.08.122
Google Scholar
[43]
Martin-Perez B., Zibara H., Hooton R.D., Thomas M.D.A. (2000) A study of the effect of chloride binding on service life predictions, Cem. Concr. Res. 30: 1215–1223.
DOI: 10.1016/s0008-8846(00)00339-2
Google Scholar
[44]
NT Build 492 (1999) Concrete, mortar and cement-based repair materials: chloride migration coefficient from non-steady state migration experiments, Nordtest Method.
Google Scholar
[45]
Andrade C., Castellote M., Alonso C., González C. (2000) Non-steady-state chloride diffusion coefficients obtained from migration and natural diffusion tests. Part I: Comparison between several methods of calculation, Mater. Struct. 33: 21–28.
DOI: 10.1007/bf02481692
Google Scholar
[46]
Tang L. (1996) Electrically accelerated methods for determing chloride diffusivity in concrete current development, Mag. Concr. Res. 48(176): 173-179.
DOI: 10.1680/macr.1996.48.176.173
Google Scholar
[47]
NT Build 208 (1996) Concrete, Hardened: Chloride Content by Volhardt Titration, Nordtest Method.
Google Scholar