Removed: Effect of Aggregate of Electric Arc Furnace Slag on Durability of Reinforced Concrete Structures in Chloride Environment (Part I)

Article Preview

Abstract:

The paper was removed due to copyright misconduct (missing consensus from all co-authors)

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] Xia J., Jin W.-L., Li L.-Y. (2012) Effect of chloride-induced reinforcing steel corrosion on the flexural strength of reinforced concrete beams. Mag Concr Rese 64(6): 471-485.

DOI: 10.1680/macr.10.00169

Google Scholar

[2] Imperatore S., Leonardi A., Rinaldi Z. (2016) Strength decay of RC sections for chloride attack. Intern J Structural Integrity 7(2): 194-212.

DOI: 10.1108/ijsi-09-2014-0043

Google Scholar

[3] Dang V.H., François R., Coronelli D. (2015) Shear behaviour and load capacity of short reinforced concrete beams exposed to chloride environment. Eur J Environ Civ Eng 20(4): 379-395.

DOI: 10.1080/19648189.2015.1036129

Google Scholar

[4] El-Sayed A.K., Hussain R.R., Shuraim A.B. (2016) Influence of stirrup corrosion on shear strength of reinforced concrete slender beams. ACI Struct J 113(6): 1223.

DOI: 10.14359/51689147

Google Scholar

[5] Blomfors M., Zandi K., Lundgren K., Coronelli D. (2018) Engineering bond model for corroded reinforcement. Eng Sruct 156: 394-410.

DOI: 10.1016/j.engstruct.2017.11.030

Google Scholar

[6] Coccia S., Imperatore S., Rinaldi Z. (2016) Influence of corrosion on the bond strength of steel rebars in concrete. Mater Struct 49 (1-2): 537-551.

DOI: 10.1617/s11527-014-0518-x

Google Scholar

[7] Zanini M.A., Pellegrino C., Morbin R., Modena C. (2013) Seismic vulnerability of bridges in transport networks subjected to environmental deterioration. Bulletin of Earthquake Engineering 11(2): 561-579.

DOI: 10.1007/s10518-012-9400-9

Google Scholar

[8] Castaldo P., Palazzo B., Mariniello A. (2017) Effects of the axial force eccentricity on the time-variant structural reliability of aging RC cross-sections subjected to chloride-induced corrosion. Eng Struct 130: 261-274.

DOI: 10.1016/j.engstruct.2016.10.053

Google Scholar

[9] Bossio A., Fabbrocino F., Lignola G.P., Prota A., Manfredi G. (2017) Simplified model for strengthening design of beam–column internal joints in reinforced concrete frames. Polymers 7(9):1732-1754.

DOI: 10.3390/polym7091479

Google Scholar

[10] Bossio A., Lignola G.P., Fabbrocino F., Monetta T., Prota A., Bellucci F., Manfredi G. (2017) Nondestructive assessment of corrosion of reinforcing bars through surface concrete cracks. Struct Concr 18(1): 104-117.

DOI: 10.1002/suco.201600034

Google Scholar

[11] Bossio A., Montuori M., Bellucci F., Lignola G.P., Prota A., Cosenza E., Manfredi G. (2013) Indirect measure of corrosion level based on crack opening. J. Heritage Conservation 34: 36-40.

Google Scholar

[12] Thomas M.D., Bamforth P.B. (1999) Modelling chloride diffusion in concrete effect of fly ash and slag, Cem Concr Res 29: 487–495.

Google Scholar

[13] Win P.P, Watanabe M., Machida A. (2004) Penetration profile of chloride ion in cracked reinforced concrete. Cem Concr Res 34: 1073–1079.

DOI: 10.1016/j.cemconres.2003.11.020

Google Scholar

[14] Collepardi M., Marcialis A., Turriziani R. (1972) Penetration of chloride ions into cement pastes and concretes. J Am Ceram Soc 55: 534–535.

DOI: 10.1111/j.1151-2916.1972.tb13424.x

Google Scholar

[15] Zanini M.A., Faleschini F., Pellegrino C. (2017) Probabilistic seismic risk forecasting of aging bridge networks. Eng Struct 136: 219-232.

DOI: 10.1016/j.engstruct.2017.01.029

Google Scholar

[16] Martin-Perez B., Zibara H., Hooton R.D., Thomas M.D.A (2000) A study of the effect of chloride binding on service life predictions, Cem Concr Res 30: 1215–1223.

DOI: 10.1016/s0008-8846(00)00339-2

Google Scholar

[17] Faleschini F., Zanini M.A., Hofer L. (2018) Reliability-Based Analysis of Recycled Aggregate Concrete under Carbonation. Advances in Civil Engineering, ID 4742372, 11 pages.

DOI: 10.1155/2018/4742372

Google Scholar

[18] Pellegrino C., Faleschini F. (2016). Recycled Aggregates for Concrete Production: State-of-the-Art. In: Sustainability Improvements in the Concrete Industry, Springer International Publishing Switzerland.

DOI: 10.1007/978-3-319-28540-5_2

Google Scholar

[19] Khoury E., Ambrós W., Cazacliu B., Sampaio C. H., Remond S. (2018) Heterogeneity of recycled concrete aggregates, an intrinsic variability. Constr Build Mater 175: 705-713.

DOI: 10.1016/j.conbuildmat.2018.04.163

Google Scholar

[20] Santamaría A., Faleschini F., Giacomello G., Brunelli K., San Josè J.-T., Pellegrino C., Pasetto M. (2018) Dimensional stability of electric arc furnace slag in civil engineering applications. J Cleaner Production 205: 599-609.

DOI: 10.1016/j.jclepro.2018.09.122

Google Scholar

[21] Santamaría A., Faleschini F., Vegas I., San-José J.-T., Pellegrino C., Gonzalez J.J. (2017) A comparison between European electric arc furnace slags. In: Proceedings of the Euroslag 2017, Metz, France.

Google Scholar

[22] Pellegrino C., Faleschini F. (2016) Electric Arc Furnace Slag Concrete. In: Sustainability Improvements in the Concrete Industry, Springer International Publishing Switzerland.

DOI: 10.1007/978-3-319-28540-5_4

Google Scholar

[23] Faleschini F., Fernandez-Ruíz M.A., Zanini M.A., Brunelli K., Pellegrino C., Hernandez-Montes E. (2015) High performance concrete with electric arc furnace slag as aggregate: mechanical and durability properties. Construct. Build. Mater. 101: 113-121.

DOI: 10.1016/j.conbuildmat.2015.10.022

Google Scholar

[24] Baroghel-Bouny V., Belin P., Maultzsch M., Henry D. (2007) AgNO3 spray tests: advantages, weaknesses, and various applications to quantify chloride ingress into concrete. Part 1: Non-steady-state diffusion tests and exposure to natural conditions. Mater Struct 40:759-781.

DOI: 10.1617/s11527-007-9233-1

Google Scholar

[25] Manso J.M., Polanco J.A., Losañez M., González J.J. (2006) Durability of concrete made with EAF slag as aggregate, Cem. Concr. Compos. 28: 528–534.

DOI: 10.1016/j.cemconcomp.2006.02.008

Google Scholar

[26] Tomellini R. (1999) Summary Report on RTD in Iron and Steel Slags: Development and Perspectives. Technical Steel Research, Report Prepared for the European Commission EUR 19066, Brussels, Belgium.

Google Scholar

[27] Arribas I., Santamaría A., Ruiz E., Ortega-Lopez V., Manso J.M. (2015) Electric arc furnace slag and its use in hydraulic concrete. Construct. Build. Mater. 90: 68-79.

DOI: 10.1016/j.conbuildmat.2015.05.003

Google Scholar

[28] EN 206-1 (2006) Concrete - Part 1: Specification, performance, production and conformity, Brussels, Belgium: Comité Europeen de Normalisation.

Google Scholar

[29] Kırgız, M.S., Pulverized Fuel Ash Cement Activated by Nanographite,, ACI Materials, Vol. 115, No. 6, p.803–812, (2018).

DOI: 10.14359/51689101

Google Scholar

[30] Kırgız, M.S., Green cement composite concept reinforced by graphite nano-engineered particle suspension for infrastructure renewal material, Composites Part B: Engineering, Vol. 154, No. 12, p.423–429, 2018.

DOI: 10.1016/j.compositesb.2018.09.012

Google Scholar

[31] Kırgız, M.S., Advancements in Mechanical and Physical Properties for Marble Powder–Cement Composites Strengthened by Nanostructured Graphite Particles, Mechanics of Materials, Vol. 92, No.1, p.223–234, 2016.

DOI: 10.1016/j.mechmat.2015.09.013

Google Scholar

[32] Kırgız, M.S., Supernatant Nanographite Solution for Advance Treatment of C Class Fly Ash–Cement Systems (Part 2),, ZKG International, No. 5, p.42–47, (2015).

Google Scholar

[33] Kırgız, M.S., Supernatant Nanographite Solution for Advance Treatment of C Class Fly Ash–Cement Systems (Part 1),, ZKG International, No. 4, p.56–65, (2015).

Google Scholar

[34] Kırgız, M.S., Advances in physical properties of C class fly ash–cement systems blended nanographite (Part 2),, ZKG International, No.1-2, p.60–67, (2015).

Google Scholar

[35] Kırgız, M.S., Advances in physical properties of C class fly ash–cement systems blended nanographite (Part 1),, ZKG International, No.12, p.42–48, (2014).

Google Scholar

[36] Chinchon-Paya S., Andrade C., Chinchon S. (2016) Indicator of carbonation front in concrete as substitute to phenolphthalein. Cem. Concr. Res. 82: 87-91.

DOI: 10.1016/j.cemconres.2015.12.010

Google Scholar

[37] Villain G., Thiery M., Platret G. (2007) Measurement methods of carbonation profiles in concrete: thermogravimetry, chemical analysis and gammadensimetry. Cem. Concr. Res., 37: 1182-1192.

DOI: 10.1016/j.cemconres.2007.04.015

Google Scholar

[38] Watanasrisin P., Supatnantakul K., Leelawat T. (2014) Three Colorimetric Methods for Evaluating Chloride Penetration of Cracked and Coated Concrete. International Conference on Chemical, Civil and Environmental Engineering (CCEE'2014) Nov 18-19, 2014 Singapore.

DOI: 10.15242/iicbe.c1114029

Google Scholar

[39] Vazquez E., Barra M., Aponte D., Jiménez C., Valls S. (2014) Improvement of the durability of concrete with recycled aggregates in chloride exposed environment. Constr. Build. Mater. 67: 61-67.

DOI: 10.1016/j.conbuildmat.2013.11.028

Google Scholar

[40] He F., Shi C., Yuan Q., Chen C., Zheng K. (2012) AgNO3-based colorimetric methods for measurement of chloride penetration in concrete. Constr. Build. Mater. 26(1): 1-8.

DOI: 10.1016/j.conbuildmat.2011.06.003

Google Scholar

[41] Fernandez-Ruiz M.A., Gil-Martin L.M., Carbonell-Marquez J.F., Hernandez-Montes E. (2018) Epoxy resin and ground tyre rubber replacement for cement in concrete: Compressive behaviour and durability properties. Constr. Build. Mater. 173: 49-57.

DOI: 10.1016/j.conbuildmat.2018.04.004

Google Scholar

[42] Alsaif A., Bernal S.A., Guadagnini M., Pilakoutas K. (2018) Durability of steel fibre reinforced rubberised concrete exposed to chlorides. Constr. Build. Mater. 108: 130-142.

DOI: 10.1016/j.conbuildmat.2018.08.122

Google Scholar

[43] Martin-Perez B., Zibara H., Hooton R.D., Thomas M.D.A. (2000) A study of the effect of chloride binding on service life predictions, Cem. Concr. Res. 30: 1215–1223.

DOI: 10.1016/s0008-8846(00)00339-2

Google Scholar

[44] NT Build 492 (1999) Concrete, mortar and cement-based repair materials: chloride migration coefficient from non-steady state migration experiments, Nordtest Method.

Google Scholar

[45] Andrade C., Castellote M., Alonso C., González C. (2000) Non-steady-state chloride diffusion coefficients obtained from migration and natural diffusion tests. Part I: Comparison between several methods of calculation, Mater. Struct. 33: 21–28.

DOI: 10.1007/bf02481692

Google Scholar

[46] Tang L. (1996) Electrically accelerated methods for determing chloride diffusivity in concrete current development, Mag. Concr. Res. 48(176): 173-179.

DOI: 10.1680/macr.1996.48.176.173

Google Scholar

[47] NT Build 208 (1996) Concrete, Hardened: Chloride Content by Volhardt Titration, Nordtest Method.

Google Scholar