[1]
Pilkuhn, M. H. Schairer, W., vol. 4 (C.Hilsum, ed.), North-Holland, Amsterdam55 (1993).
Google Scholar
[2]
Kicklbick, G., Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale, Prog. Polym. Sci. 28 (2003) 83–114.
Google Scholar
[3]
Neugebauer, H.Brabec, C.Hummenen, J. C. and Sariciftci, Stability and photodegradation mechanisms of conjugated polymer/fullerene plastic solar cells, Sol. Ener. Mater. Sol. Cells, 61(2000) 35-42.
DOI: 10.1016/s0927-0248(99)00094-x
Google Scholar
[4]
Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Baharvand H, Kiani S, Al-Deyab SS, Ramakrishna S., Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. , J. Tissue EngRegen Med 5 (2011) 17-35.
DOI: 10.1002/term.383
Google Scholar
[5]
Suhail M, Ibrahim I, Ahmad Z, Abdullah S, and Sulaiman K, ITO/PEDOT: PSS/MEH: PPV/Alq3/LiF/Au as a Schottky diode, J.IJAIEM 2 (2013) 2319 – 4847.
Google Scholar
[6]
Balint R, Cassidy NJ and Cartmell SH, Conductive polymers: towards a smart biomaterial for tissue engineering J. ActaBiomater 10(2014) 2341-2353.
DOI: 10.1016/j.actbio.2014.02.015
Google Scholar
[7]
Ravichandran R, Sundarrajan S, Venugopal JR, Mukherjee S and Ramakrishna S, Applications of conducting polymers and their issues in biomedical engineering, J R Soc Interface 7 Suppl 5 (2010) S559-579.
DOI: 10.1098/rsif.2010.0120.focus
Google Scholar
[8]
H. O. Finklea, in Semiconductor Electrodes, H. O. Finklea, Ed., Elsevier, New York, p.52(1988).
Google Scholar
[9]
K. D. Benkstein, N. Kopidakis, J. Van de Lagemaat, and A. J. Frank, Influence of the Percolation Network Geometry on Electron Transport in Dye-Sensitized Titanium Dioxide Solar Cells, J. Phys. Chem., B, 107,(2003) 7759–7767.
DOI: 10.1021/jp022681l
Google Scholar
[10]
M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto and F. Wang, Highly Efficient Dye-Sensitized Solar Cells with a Titania Thin-Film Electrode Composed of a Network Structure of Single-Crystal-like TiO2Nanowires Made by the Oriented Attachment, Mechanism, J. Am. Chem. Sci., 126(2004) 14943–14949.
DOI: 10.1021/ja048068s
Google Scholar
[11]
Ahmad Z, Suhail M, Ibrahim I, Al-Rawi W, Sulaiman K, Zafar Q, Hamzah A, and Shaameri Z, MEH-PPV/Alq3-based bulk heterojunction photodetector, J. Chin. Phys.B, 22 (2013) 100701.
DOI: 10.1088/1674-1056/22/10/100701
Google Scholar
[12]
Dubbe A, Fundamentals of Solid State Ionic Micro Gas Sensors, J. Sens. Actuators B 88 (2003)138-148.
DOI: 10.1016/s0925-4005(02)00317-9
Google Scholar
[13]
Timmer B, Olthuis W and van den Berg A, Ammonia sensors and their applications—a review, J.Sens. Actuators B 107 (2005) 666-677.
DOI: 10.1016/j.snb.2004.11.054
Google Scholar
[14]
Isam. M. Ibrahim, ENHANCEMENT OF THE SENSITIVITY OF MEH-PPV AGAINST NO2 TOXIC GAS, Sci.Int.(Lahore) 29 (2017) 1197-1202.
Google Scholar
[15]
Asada M, Sheikhia M, Pourfathb M, and Moradid M, High sensitive and selective flexible H2S gas sensors based on Cu nanoparticle decorated SWCNTs, J. Elsevier Sensors and Actuators B 210 (2015)1–8.
DOI: 10.1016/j.snb.2014.12.086
Google Scholar
[16]
Patil. R, L. A. Patil, G. H. Jain, and M. S. Wagh, Surface activated ZnO thick film resistors for LPG gas sensing, Sensors Transducers J. 74( 2006) 874–883.
DOI: 10.1016/j.snb.2005.11.031
Google Scholar
[17]
DOCTOR Thesis OF PHILOSOPHY in Polymer Chemistry, Vidya G, Kochi – 682022, Kerala, (2012).
Google Scholar
[18]
I M Ibrahim, A H Khalid and M H A.Wahid, Enhancement of MEH-PPV: CNT for H2S gas sensor, J. Phys.: Conf. Ser. 1032 (2018) 012003.
DOI: 10.1088/1742-6596/1032/1/012003
Google Scholar
[19]
Clarke E and Glew D, Aqueous Nonelectrolyte Solutions. Part VIII. Deuterium and Hydrogen Sulfides Solubilities in Deuterium Oxide and Water, J. Chem. 49(1971) 691-698.
DOI: 10.1139/v71-116
Google Scholar