[1]
R. Shimpi, H. Patel, Free vibrations of plate using two variable refined plate theory, J. Sound Vib. 296 ,979–999. (2006).
DOI: 10.1016/j.jsv.2006.03.030
Google Scholar
[2]
D. Shahsavari, M. Janghorban, Bending and shearing responses for dynamic analysis of single-layer graphene sheets under moving load, J. Braz. Soc. Mech. Sci. Eng. (2017) 1–13. [3] R. Shimpi, H. Patel, A two variable refined plate theory for orthotropic plate analysis, Int. J. Solids Struct. 43, 6783–6799. (2006).
DOI: 10.1007/s40430-017-0863-0
Google Scholar
[4]
I. Mechab, H.A. Atmane, A. Tounsi, H.A. Belhadj, A two variable refined plate theory for the bending analysis of functionally graded plates, Acta Mech. Sin. 26 ,941–949. (2010).
DOI: 10.1007/s10409-010-0372-1
Google Scholar
[5]
B. Karami, D. Shahsavari, M. Janghorban, Wave propagation analysis in func-tionally graded (FG) nanoplates under in-plane magnetic field based on non-local strain gradient theory and four variable refined plate theory, Mech. Adv. Mat. Struct. (2017).
DOI: 10.1080/15376494.2017.1323143
Google Scholar
[6]
M. Zidi, A. Tounsi, M.S.A. Houari, O.A. Bég, Bending analysis of FGM plates un-der hygro-thermo-mechanical loading using a four variable refined plate the-ory, Aerosp. Sci. Technol. 34 ,24–34. (2014).
DOI: 10.1016/j.ast.2014.02.001
Google Scholar
[7]
H.-T. Thai, S.-E. Kim, Analytical solution of a two variable refined plate theory for bending analysis of orthotropic Levy-type plates, Int. J. Mech. Sci. 54 ,269–276. (2012).
DOI: 10.1016/j.ijmecsci.2011.11.007
Google Scholar
[8]
M.S.A. Houari, A. Tounsi, A. Bessaim, S. Mahmoud, A new simple three- unknown sinusoidal shear deformation theory for functionally graded plates, Steel Compos. Struct. 22, 257–276. (2016).
DOI: 10.12989/scs.2016.22.2.257
Google Scholar
[9]
A. Attia, A. Tounsi, E.A. Bedia, S. Mahmoud, Free vibration analysis of function-ally graded plates with temperature-dependent properties using various four variable refined plate theories, Steel Compos. Struct. 18 , 187–212. (2015).
DOI: 10.12989/scs.2015.18.1.187
Google Scholar
[10]
H. Bellifa, K.H. Benrahou, L. Hadji, M.S.A. Houari, A. Tounsi, Bending and free vibration analysis of functionally graded plates using a simple shear deforma-tion theory and the concept the neutral surface position, J. Braz. Soc. Mech. Sci. Eng. 38 ,265–275. (2016).
DOI: 10.1007/s40430-015-0354-0
Google Scholar
[11]
M. Karama, B.A. Harb, S. Mistou, S. Caperaa, Bending, buckling and free vibra- tion of laminated composite with a transverse shear stress continuity model, Composites, Part B, Eng. 29, 223–234. (1998).
DOI: 10.1016/s1359-8368(97)00024-3
Google Scholar
[12]
Y. Beldjelili, A. Tounsi, S. Mahmoud, Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory, Smart Struct. Syst. 18, 755–786. (2016).
DOI: 10.12989/sss.2016.18.4.755
Google Scholar
[13]
A. Boukhari, H.A. Atmane, A. Tounsi, B. Adda, S. Mahmoud, An efficient shear deformation theory for wave propagation of functionally graded mate- rial plates, Struct. Eng. Mech. 57 ,837–859. (2016).
DOI: 10.12989/sem.2016.57.5.837
Google Scholar
[14]
A.A. Bousahla, S. Benyoucef, A. Tounsi, S. Mahmoud, On thermal stability of plates with functionally graded coefficient of thermal expansion, Struct. Eng. Mech. 60, 313–335. (2016).
DOI: 10.12989/sem.2016.60.2.313
Google Scholar
[15]
B. Bouderba, M.S.A. Houari, A. Tounsi, S. Mahmoud, Thermal stability of func-tionally graded sandwich plates using a simple shear deformation theory, Struct. Eng. Mech. 58, 397–422. (2016).
DOI: 10.12989/sem.2016.58.3.397
Google Scholar
[16]
A. Chikh, A. Tounsi, H. Hebali, S. Mahmoud, Thermal buckling analysis of cross- ply laminated plates using a simplified HSDT, Smart Struct. Syst. 19 ,289–297. (2017).
DOI: 10.12989/sss.2017.19.3.289
Google Scholar
[17]
H. Bellifa, K.H. Benrahou, A.A. Bousahla, A. Tounsi, S. Mahmoud, A non-local zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams, Struct. Eng. Mech. 62 ,695–702. (2017).
Google Scholar
[18]
S.A. Yahia, H.A. Atmane, M.S.A. Houari, A. Tounsi, Wave propagation in func-tionally graded plates with porosities using various higher-order shear defor- mation plate theories, Struct. Eng. Mech. 53 ,1143–1165. (2015).
DOI: 10.12989/sem.2015.53.6.1143
Google Scholar
[19]
A. Tounsi, M.S.A. Houari, S. Benyoucef, A refined trigonometric shear deforma-tion theory for thermoelastic bending of functionally graded sandwich plates, Aerosp. Sci. Technol. 24 209–220. (2013).
DOI: 10.1016/j.ast.2011.11.009
Google Scholar
[20]
I. Mechab, B. Mechab, S. Benaissa, Static and dynamic analysis of function-ally graded plates using four-variable refined plate theory by the new function, Composites, Part B, Eng. 45 748–757. (2013).
DOI: 10.1016/j.compositesb.2012.07.015
Google Scholar
[21]
D. Shahsavari, B. Karami, S. Mansouri, Shear buckling of single layer graphene sheets in hygrothermal environment resting on elastic foundation based on different nonlocal strain gradient theories, Eur. J. Mech. A, Solids (2017).
DOI: 10.1016/j.euromechsol.2017.09.004
Google Scholar
[22]
Zhu, J. Lai, Z. Yin, Z. Jeon, J. and Lee, S. Fabrication of ZrO2–NiCr functionally graded material by powder metallurgy. Mater. Chem. Phys, 68(1-3), 130-135, (2001).
DOI: 10.1016/s0254-0584(00)00355-2
Google Scholar
[23]
Wattanasakulpong, N. Prusty, B.G. Kelly, D.W. and Hoffman, M. Free vibration analysis of layered functionally graded beams with experimental validation. Mater. Des, 36, 182-190, (2012).
DOI: 10.1016/j.matdes.2011.10.049
Google Scholar
[24]
Wattanasakulpong, N. and Ungbhakorn, V. Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities. Aerosp.Sci. Technol, 32(1),111-120, (2014).
DOI: 10.1016/j.ast.2013.12.002
Google Scholar
[25]
S. Merdaci, A. Tounsi, M.S.A. Houari, I. Mechab, H. Hebali, S. Benyoucef, Two new refined shear displacement models for functionally graded sandwich plates, Arch. Appl. Mech. 81 1507e22. (2011).
DOI: 10.1007/s00419-010-0497-5
Google Scholar
[26]
S.Merdaci, A. Tounsi, A.Bakora A novel four variable refined plate theory for laminated composite plates, ; An International Journal Steel & Composite Structures; N.4, Vol 22, pp.713-732,(2016).
DOI: 10.12989/scs.2016.22.4.713
Google Scholar
[27]
MERDACI Slimane Study and Comparison of Different Plate Theory,; International Journal of Engineering Research And Advanced Technology (IJERAT); Vol.3 (Number 8), pp.49-59, (2017).
Google Scholar
[28]
A. Hadj Mostefa, S.Merdaci, and N. Mahmoudi An Overview of Functionally Graded Materials «FGM», , Proceedings of the Third International Symposium on Materials and Sustainable Development, ISBN 978-3-319-89706-6, p.267–278, (2018).
DOI: 10.1007/978-3-319-89707-3_30
Google Scholar
[29]
Merdaci Slimane Analysis of Bending of Ceramic-Metal Functionally Graded Plates with Porosities Using of High Order Shear Theory,; Advanced Engineering Forum; Vol.30, pp.54-70, (2018).
DOI: 10.4028/www.scientific.net/aef.30.54
Google Scholar
[30]
Merdaci .S, Belghoul.H, High Order Shear Theory for Static Analysis Functionally Graded Plates with Porosities,, Comptes rendus Mecanique, Vol 347, Issue3, pp.207-217, (2019).
DOI: 10.1016/j.crme.2019.01.001
Google Scholar
[31]
G.Kirchhoff .uber das gleichgewicht und die bewegung einer elastichen scheib.Journal fur reine und angewandte Mathematik, Vol .40, pages 51-88 ,(1950).
DOI: 10.1515/crll.1850.40.51
Google Scholar
[32]
Reddy, J. N. A simple higher-order theory for laminated composite plates., J. Appl. Mech., 51(4), 745. (1984).
Google Scholar
[33]
Reddy, J. N. Analysis of functionally graded plates., Int. J. Numer. Methods Eng., 47, 663–684. 404.(2000).
Google Scholar
[34]
Reddy, J. N. Energy principles and variational methods in applied mechanics, Wiley, New York. 406.(2002).
Google Scholar
[35]
Reddy, J. N., and Phan, N. D. Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory., J. Sound Vibrat., 98, 157–170. (1985).
DOI: 10.1016/0022-460x(85)90383-9
Google Scholar
[36]
Whitney, J. M., and Pagano, N. J. Shear deformation in hetero-geneous anisotropic plates., J. Appl. Mech., 37, 1031–1036. (1970).
DOI: 10.1115/1.3408654
Google Scholar
[37]
Jha D.K. Kant, T., and Singh R.K. Higher order shear and normal deformation theory for natural frequency of functionally graded rectangular plates., Nucl. Eng. Des., 250, 8–13. (2012).
DOI: 10.1016/j.nucengdes.2012.05.001
Google Scholar
[38]
Shahrjerdi, A., Mustapha, F., Bayat, M., Sapuan, S. M., Zahari, R., and Shahzamanian, M. M. Natural frequency of F.G. rectangular plate by shear deformation theory., Mater. Sci. Eng., 17,10.1088/1757- 412 899X/17/1/012008. (2011).
DOI: 10.1088/1757-899x/17/1/012008
Google Scholar