Free Vibration Analysis of Composite Material Plates "Case of a Typical Functionally Graded FG Plates Ceramic/Metal" with Porosities

Article Preview

Abstract:

This article presents the free vibration analysis of simply supported plate FG porous using a high order shear deformation theory. In is work the material properties of the porous plate FG vary across the thickness. The proposed theory contains four unknowns unlike the other theories which contain five unknowns. This theory has a parabolic shear deformation distribution across the thickness. So it is useless to use the shear correction factors. The Hamilton's principle will be used herein to determine the equations of motion. Since, the plate are simply supported the Navier procedure will be retained. To show the precision of this model, several comparisons have been made between the present results and those of existing theories in the literature for non-porous plates. Effects of the exponent graded and porosity factors are investigated.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

69-83

Citation:

Online since:

April 2019

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Shimpi, H. Patel, Free vibrations of plate using two variable refined plate theory, J. Sound Vib. 296 ,979–999. (2006).

DOI: 10.1016/j.jsv.2006.03.030

Google Scholar

[2] D. Shahsavari, M. Janghorban, Bending and shearing responses for dynamic analysis of single-layer graphene sheets under moving load, J. Braz. Soc. Mech. Sci. Eng. (2017) 1–13. [3] R. Shimpi, H. Patel, A two variable refined plate theory for orthotropic plate analysis, Int. J. Solids Struct. 43, 6783–6799. (2006).

DOI: 10.1007/s40430-017-0863-0

Google Scholar

[4] I. Mechab, H.A. Atmane, A. Tounsi, H.A. Belhadj, A two variable refined plate theory for the bending analysis of functionally graded plates, Acta Mech. Sin. 26 ,941–949. (2010).

DOI: 10.1007/s10409-010-0372-1

Google Scholar

[5] B. Karami, D. Shahsavari, M. Janghorban, Wave propagation analysis in func-tionally graded (FG) nanoplates under in-plane magnetic field based on non-local strain gradient theory and four variable refined plate theory, Mech. Adv. Mat. Struct. (2017).

DOI: 10.1080/15376494.2017.1323143

Google Scholar

[6] M. Zidi, A. Tounsi, M.S.A. Houari, O.A. Bég, Bending analysis of FGM plates un-der hygro-thermo-mechanical loading using a four variable refined plate the-ory, Aerosp. Sci. Technol. 34 ,24–34. (2014).

DOI: 10.1016/j.ast.2014.02.001

Google Scholar

[7] H.-T. Thai, S.-E. Kim, Analytical solution of a two variable refined plate theory for bending analysis of orthotropic Levy-type plates, Int. J. Mech. Sci. 54 ,269–276. (2012).

DOI: 10.1016/j.ijmecsci.2011.11.007

Google Scholar

[8] M.S.A. Houari, A. Tounsi, A. Bessaim, S. Mahmoud, A new simple three- unknown sinusoidal shear deformation theory for functionally graded plates, Steel Compos. Struct. 22, 257–276. (2016).

DOI: 10.12989/scs.2016.22.2.257

Google Scholar

[9] A. Attia, A. Tounsi, E.A. Bedia, S. Mahmoud, Free vibration analysis of function-ally graded plates with temperature-dependent properties using various four variable refined plate theories, Steel Compos. Struct. 18 , 187–212. (2015).

DOI: 10.12989/scs.2015.18.1.187

Google Scholar

[10] H. Bellifa, K.H. Benrahou, L. Hadji, M.S.A. Houari, A. Tounsi, Bending and free vibration analysis of functionally graded plates using a simple shear deforma-tion theory and the concept the neutral surface position, J. Braz. Soc. Mech. Sci. Eng. 38 ,265–275. (2016).

DOI: 10.1007/s40430-015-0354-0

Google Scholar

[11] M. Karama, B.A. Harb, S. Mistou, S. Caperaa, Bending, buckling and free vibra- tion of laminated composite with a transverse shear stress continuity model, Composites, Part B, Eng. 29, 223–234. (1998).

DOI: 10.1016/s1359-8368(97)00024-3

Google Scholar

[12] Y. Beldjelili, A. Tounsi, S. Mahmoud, Hygro-thermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory, Smart Struct. Syst. 18, 755–786. (2016).

DOI: 10.12989/sss.2016.18.4.755

Google Scholar

[13] A. Boukhari, H.A. Atmane, A. Tounsi, B. Adda, S. Mahmoud, An efficient shear deformation theory for wave propagation of functionally graded mate- rial plates, Struct. Eng. Mech. 57 ,837–859. (2016).

DOI: 10.12989/sem.2016.57.5.837

Google Scholar

[14] A.A. Bousahla, S. Benyoucef, A. Tounsi, S. Mahmoud, On thermal stability of plates with functionally graded coefficient of thermal expansion, Struct. Eng. Mech. 60, 313–335. (2016).

DOI: 10.12989/sem.2016.60.2.313

Google Scholar

[15] B. Bouderba, M.S.A. Houari, A. Tounsi, S. Mahmoud, Thermal stability of func-tionally graded sandwich plates using a simple shear deformation theory, Struct. Eng. Mech. 58, 397–422. (2016).

DOI: 10.12989/sem.2016.58.3.397

Google Scholar

[16] A. Chikh, A. Tounsi, H. Hebali, S. Mahmoud, Thermal buckling analysis of cross- ply laminated plates using a simplified HSDT, Smart Struct. Syst. 19 ,289–297. (2017).

DOI: 10.12989/sss.2017.19.3.289

Google Scholar

[17] H. Bellifa, K.H. Benrahou, A.A. Bousahla, A. Tounsi, S. Mahmoud, A non-local zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams, Struct. Eng. Mech. 62 ,695–702. (2017).

Google Scholar

[18] S.A. Yahia, H.A. Atmane, M.S.A. Houari, A. Tounsi, Wave propagation in func-tionally graded plates with porosities using various higher-order shear defor- mation plate theories, Struct. Eng. Mech. 53 ,1143–1165. (2015).

DOI: 10.12989/sem.2015.53.6.1143

Google Scholar

[19] A. Tounsi, M.S.A. Houari, S. Benyoucef, A refined trigonometric shear deforma-tion theory for thermoelastic bending of functionally graded sandwich plates, Aerosp. Sci. Technol. 24 209–220. (2013).

DOI: 10.1016/j.ast.2011.11.009

Google Scholar

[20] I. Mechab, B. Mechab, S. Benaissa, Static and dynamic analysis of function-ally graded plates using four-variable refined plate theory by the new function, Composites, Part B, Eng. 45 748–757. (2013).

DOI: 10.1016/j.compositesb.2012.07.015

Google Scholar

[21] D. Shahsavari, B. Karami, S. Mansouri, Shear buckling of single layer graphene sheets in hygrothermal environment resting on elastic foundation based on different nonlocal strain gradient theories, Eur. J. Mech. A, Solids (2017).

DOI: 10.1016/j.euromechsol.2017.09.004

Google Scholar

[22] Zhu, J. Lai, Z. Yin, Z. Jeon, J. and Lee, S. Fabrication of ZrO2–NiCr functionally graded material by powder metallurgy. Mater. Chem. Phys, 68(1-3), 130-135, (2001).

DOI: 10.1016/s0254-0584(00)00355-2

Google Scholar

[23] Wattanasakulpong, N. Prusty, B.G. Kelly, D.W. and Hoffman, M. Free vibration analysis of layered functionally graded beams with experimental validation. Mater. Des, 36, 182-190, (2012).

DOI: 10.1016/j.matdes.2011.10.049

Google Scholar

[24] Wattanasakulpong, N. and Ungbhakorn, V. Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities. Aerosp.Sci. Technol, 32(1),111-120, (2014).

DOI: 10.1016/j.ast.2013.12.002

Google Scholar

[25] S. Merdaci, A. Tounsi, M.S.A. Houari, I. Mechab, H. Hebali, S. Benyoucef, Two new refined shear displacement models for functionally graded sandwich plates, Arch. Appl. Mech. 81 1507e22. (2011).

DOI: 10.1007/s00419-010-0497-5

Google Scholar

[26] S.Merdaci, A. Tounsi, A.Bakora A novel four variable refined plate theory for laminated composite plates, ; An International Journal Steel & Composite Structures; N.4, Vol 22, pp.713-732,(2016).

DOI: 10.12989/scs.2016.22.4.713

Google Scholar

[27] MERDACI Slimane Study and Comparison of Different Plate Theory,; International Journal of Engineering Research And Advanced Technology (IJERAT); Vol.3 (Number 8), pp.49-59, (2017).

Google Scholar

[28] A. Hadj Mostefa, S.Merdaci, and N. Mahmoudi An Overview of Functionally Graded Materials «FGM», , Proceedings of the Third International Symposium on Materials and Sustainable Development, ISBN 978-3-319-89706-6, p.267–278, (2018).

DOI: 10.1007/978-3-319-89707-3_30

Google Scholar

[29] Merdaci Slimane Analysis of Bending of Ceramic-Metal Functionally Graded Plates with Porosities Using of High Order Shear Theory,; Advanced Engineering Forum; Vol.30, pp.54-70, (2018).

DOI: 10.4028/www.scientific.net/aef.30.54

Google Scholar

[30] Merdaci .S, Belghoul.H, High Order Shear Theory for Static Analysis Functionally Graded Plates with Porosities,, Comptes rendus Mecanique, Vol 347, Issue3, pp.207-217, (2019).

DOI: 10.1016/j.crme.2019.01.001

Google Scholar

[31] G.Kirchhoff .uber das gleichgewicht und die bewegung einer elastichen scheib.Journal fur reine und angewandte Mathematik, Vol .40, pages 51-88 ,(1950).

DOI: 10.1515/crll.1850.40.51

Google Scholar

[32] Reddy, J. N. A simple higher-order theory for laminated composite plates., J. Appl. Mech., 51(4), 745. (1984).

Google Scholar

[33] Reddy, J. N. Analysis of functionally graded plates., Int. J. Numer. Methods Eng., 47, 663–684. 404.(2000).

Google Scholar

[34] Reddy, J. N. Energy principles and variational methods in applied mechanics, Wiley, New York. 406.(2002).

Google Scholar

[35] Reddy, J. N., and Phan, N. D. Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory., J. Sound Vibrat., 98, 157–170. (1985).

DOI: 10.1016/0022-460x(85)90383-9

Google Scholar

[36] Whitney, J. M., and Pagano, N. J. Shear deformation in hetero-geneous anisotropic plates., J. Appl. Mech., 37, 1031–1036. (1970).

DOI: 10.1115/1.3408654

Google Scholar

[37] Jha D.K. Kant, T., and Singh R.K. Higher order shear and normal deformation theory for natural frequency of functionally graded rectangular plates., Nucl. Eng. Des., 250, 8–13. (2012).

DOI: 10.1016/j.nucengdes.2012.05.001

Google Scholar

[38] Shahrjerdi, A., Mustapha, F., Bayat, M., Sapuan, S. M., Zahari, R., and Shahzamanian, M. M. Natural frequency of F.G. rectangular plate by shear deformation theory., Mater. Sci. Eng., 17,10.1088/1757- 412 899X/17/1/012008. (2011).

DOI: 10.1088/1757-899x/17/1/012008

Google Scholar