[1]
A. Mehrparvar, Cubesat Design Specifications rev. 9. California Polytechnic State University San Luis Obispo / Stanford University, (2014).
DOI: 10.31979/mti.2023.2153
Google Scholar
[2]
K.S. Niaki, A. Anvari and F. Farhani, Aluminum and composite materials for satellite structures A comparison of thermal performance, Materials Research in India, 4 (1) (2007), 25-34.
DOI: 10.13005/msri/040104
Google Scholar
[3]
M. Matney, A. Vavri, A. Manis. Effects of CubeSat Deployments in Low-Earth Orbit. Proceedings of the 7th European Conference on Space Debris, ESA Space Debris Office (2017).
Google Scholar
[4]
A. Ampatzoglou, A. Baltopoulos, A. Kotzakolios, V. Kostopoulos, Qualification of Composite Structure for Cubesat Picosatellites as a Demonstration for Small Satellite Elements. Int. J. of Aeronautical Science & Aerospace Research, 1 (2014), 1-10.
Google Scholar
[5]
M. Noca, F. Jordan, N. Steiner, T. Choueiri, Borgeaud, F. George, G. Roerhlisberger, N. Scheidegger, H. Peter-Contesse, M. Borgeaud, R. Krpoun, H. Shea. Lessons learned from the first Swiss Pico-satellite: Swiss Cube. Proceedings of the 23rd Annual AIAA/USU Conference on Small Satellites (2009).
DOI: 10.1007/978-3-642-03501-2_19
Google Scholar
[6]
M. Stepanova, EE. Antonova, PS. Moya, VA. Pinto, JA. Valdivia. Multisatellite Analysis of Plasma Pressure in the Inner Magnetosphere during the 1 June 2013 Geomagnetic Storm. Journal of Geophysical Research: Space Physics, (2014).
DOI: 10.1029/2018ja025965
Google Scholar
[7]
L. Sorrentino, M. Aurilia, L. Cafiero, S. Cioffi, S. Iannace, Mechanical behavior of solid and foamed polyester/expanded graphite nanocomposites, J. Cell. Plast. 48 (2012) 355–368.
DOI: 10.1177/0021955x12449641
Google Scholar
[8]
S. Boukheir, A. Len, J. Füzi, V. Kenderesi, M.E. Achour, N. Éber, L.C. Costa, A. Oueriagli, A. Outzourhit, Structural characterization and electrical properties of carbon nanotubes/epoxy polymer composites, J. Appl. Polym. Sci. 134 (2017).
DOI: 10.1002/app.44514
Google Scholar
[9]
P. Gonzalez-García, R. Ramírez-Aguilar, M. Torres, Edgar A. Franco-Urquiza, J. May-Crespo, Nayeli Camacho. Mechanical and thermal behavior dependence on graphite and oxidized graphite content in polyester composites. Polymer 153 (2018) 9-16.
DOI: 10.1016/j.polymer.2018.06.069
Google Scholar
[10]
V. Chaudhary, P. K. Bajpai. Effect of Particulate Filler on Mechanical Properties of Polyester based Composites. Materials Today: Proceedings, 4 (2017), 9893-9897.
DOI: 10.1016/j.matpr.2017.06.289
Google Scholar
[11]
E. Franco-Urquiza, P. González-García, J. Bárcena-Balderas, M. Torres-Arellano. Thermo-mechanical and wettability properties of a polyester resin reinforced by ZnO. Submitted to Polymer International. (2019).
Google Scholar
[12]
JF May, N. Camacho, M. Torres, et al. Thermal Characterization of Epoxy Resin Composites for Nanosatellite Structures, in Proceedings of the XXVI International Materials Research Congress, (2017).
Google Scholar
[13]
N. Camacho, JF. May-Crespo, JB. Rojas-Trigos, GC. Mondragon-Rodriguez, K. Martinez, E. Marin. Thermal properties and degradation kinetics of epoxy-γ-alumina and epoxy-zinc oxide composites. Submitted to Polymer Testing. (2019).
DOI: 10.31349/revmexfis.66.479
Google Scholar
[14]
TJ. Madera-Santana, Y. Freile-Pelegrín, JA. Azamar-Barrios. Physicochemical and morphological properties of plasticized poly(vinyl alcohol)–agar biodegradable films. Int. J. Biol. Macromol. 69 (2014), 176-184.
DOI: 10.1016/j.ijbiomac.2014.05.044
Google Scholar
[15]
M. Muasher, M. Sain. The efficacy of photostabilizers on the color change of wood filled plastic composites. Pol. Deg. Stabil. 91 (5) (2006), 1156-1165.
DOI: 10.1016/j.polymdegradstab.2005.06.024
Google Scholar
[16]
BS. Teixeira, RHL. Garcia, PYI. Takinami, NL. Del Mastro. Comparison of gamma radiation effects on natural corn and potato starches and modified cassava starch. Rad. Phys. Chem. 142 (2018), 44-49.
DOI: 10.1016/j.radphyschem.2017.09.001
Google Scholar
[17]
S. Corpino, M.Caldera, F.Nichele, M.Masoero and N.Viola, Thermal design and analysis of a nanosatellite in low earth orbit. Acta Astronautica, 115 (2015), 247-261.
DOI: 10.1016/j.actaastro.2015.05.012
Google Scholar
[18]
L. Jaques, Thermal design of the OUFTI-1 Nanosatellite, Master Thesis, University of Liege, (2009).
Google Scholar
[19]
S. Piedra, M. Torres, et al. Thermal and Mechanical Numerical Analysis of the Primary Composite Structure of a CubeSat, in Proceedings of the XXVII International Materials Research Congress, (2018).
Google Scholar
[20]
S. Piedra, M. Torres, S. Ledesma. Thermal Numerical Analysis of the Primary Composite Structure of a CubeSat. Aerospace, 6 (9), (2019), 97-111,.
DOI: 10.3390/aerospace6090097
Google Scholar
[21]
SJ. Kang and HU Oh. On-Orbit Thermal Design and Validation of 1U Standardized CubeSat of STEP Cube Lab. Int. J. Aerosp. Eng, (2016), 4213189,.
Google Scholar
[22]
M. Torres, S. Ledesma, et al. Manufacturing and Mechanical Characterization of Composite Panels for CubeSat Structures, in Proceedings of the XXVII International Materials Research Congress, (2018).
Google Scholar
[23]
ANSYS Mechanical User's Guide. Available online: \url{https://www.sharcnet.ca/Software/Ansys/18.2.2/en-us/help/ai_sinfo/mech_intro.html} (accessed on January 25th 2019).
Google Scholar