Characterization of Epoxy-Nanoparticle Composites Exposed to Gamma & UV Radiation for Aerospace Applications

Article Preview

Abstract:

The present work lies in the framework of designing polymeric fibre reinforced materials to be used in nanosatellite structures (CubeSat). In the design of any structural system for a space mission the balance between mass, stiffness and strength must be taken into account, also the used materials have to be appropriated for the space environmental conditions. The CubeSat are exposed to high radiation levels (because of the sun irradiance), and so, the accurate determination of the thermal and radiation properties are a key issue for the materials design used in such applications. This work reports the thermal and radiation performance of a biphasic epoxy resin system incorporating two types of ceramic nanoparticles: zinc oxide and graphene, chosen as potential fillers to improve the thermal properties of the epoxy system. Materials are exposed to Gamma and UV radiation at rates of 1 kGy and 10 kGy and characterized after exposure. Different characterization techniques (Thermogravimetric analysis - TGA, Scanning Electron Microscopy - SEM and Colorimetry) are performed to determine thermal properties and possible material degradation after radiation exposure. The influence of the different nanofiller in the thermal and radiation response of the epoxy system are discussed. Thermal properties found are also added to the Finite Element Analysis of a CubeSat composite structure to estimate more accurately its performance under the thermal load and service conditions during satellite life cycle.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-65

Citation:

Online since:

November 2019

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2019 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Mehrparvar, Cubesat Design Specifications rev. 9. California Polytechnic State University San Luis Obispo / Stanford University, (2014).

DOI: 10.31979/mti.2023.2153

Google Scholar

[2] K.S. Niaki, A. Anvari and F. Farhani, Aluminum and composite materials for satellite structures A comparison of thermal performance, Materials Research in India, 4 (1) (2007), 25-34.

DOI: 10.13005/msri/040104

Google Scholar

[3] M. Matney, A. Vavri, A. Manis. Effects of CubeSat Deployments in Low-Earth Orbit. Proceedings of the 7th European Conference on Space Debris, ESA Space Debris Office (2017).

Google Scholar

[4] A. Ampatzoglou, A. Baltopoulos, A. Kotzakolios, V. Kostopoulos, Qualification of Composite Structure for Cubesat Picosatellites as a Demonstration for Small Satellite Elements. Int. J. of Aeronautical Science & Aerospace Research, 1 (2014), 1-10.

Google Scholar

[5] M. Noca, F. Jordan, N. Steiner, T. Choueiri, Borgeaud, F. George, G. Roerhlisberger, N. Scheidegger, H. Peter-Contesse, M. Borgeaud, R. Krpoun, H. Shea. Lessons learned from the first Swiss Pico-satellite: Swiss Cube. Proceedings of the 23rd Annual AIAA/USU Conference on Small Satellites (2009).

DOI: 10.1007/978-3-642-03501-2_19

Google Scholar

[6] M. Stepanova, EE. Antonova, PS. Moya, VA. Pinto, JA. Valdivia. Multisatellite Analysis of Plasma Pressure in the Inner Magnetosphere during the 1 June 2013 Geomagnetic Storm. Journal of Geophysical Research: Space Physics, (2014).

DOI: 10.1029/2018ja025965

Google Scholar

[7] L. Sorrentino, M. Aurilia, L. Cafiero, S. Cioffi, S. Iannace, Mechanical behavior of solid and foamed polyester/expanded graphite nanocomposites, J. Cell. Plast. 48 (2012) 355–368.

DOI: 10.1177/0021955x12449641

Google Scholar

[8] S. Boukheir, A. Len, J. Füzi, V. Kenderesi, M.E. Achour, N. Éber, L.C. Costa, A. Oueriagli, A. Outzourhit, Structural characterization and electrical properties of carbon nanotubes/epoxy polymer composites, J. Appl. Polym. Sci. 134 (2017).

DOI: 10.1002/app.44514

Google Scholar

[9] P. Gonzalez-García, R. Ramírez-Aguilar, M. Torres, Edgar A. Franco-Urquiza, J. May-Crespo, Nayeli Camacho. Mechanical and thermal behavior dependence on graphite and oxidized graphite content in polyester composites. Polymer 153 (2018) 9-16.

DOI: 10.1016/j.polymer.2018.06.069

Google Scholar

[10] V. Chaudhary, P. K. Bajpai. Effect of Particulate Filler on Mechanical Properties of Polyester based Composites. Materials Today: Proceedings, 4 (2017), 9893-9897.

DOI: 10.1016/j.matpr.2017.06.289

Google Scholar

[11] E. Franco-Urquiza, P. González-García, J. Bárcena-Balderas, M. Torres-Arellano. Thermo-mechanical and wettability properties of a polyester resin reinforced by ZnO. Submitted to Polymer International. (2019).

Google Scholar

[12] JF May, N. Camacho, M. Torres, et al. Thermal Characterization of Epoxy Resin Composites for Nanosatellite Structures, in Proceedings of the XXVI International Materials Research Congress, (2017).

Google Scholar

[13] N. Camacho, JF. May-Crespo, JB. Rojas-Trigos, GC. Mondragon-Rodriguez, K. Martinez, E. Marin. Thermal properties and degradation kinetics of epoxy-γ-alumina and epoxy-zinc oxide composites. Submitted to Polymer Testing. (2019).

DOI: 10.31349/revmexfis.66.479

Google Scholar

[14] TJ. Madera-Santana, Y. Freile-Pelegrín, JA. Azamar-Barrios. Physicochemical and morphological properties of plasticized poly(vinyl alcohol)–agar biodegradable films. Int. J. Biol. Macromol. 69 (2014), 176-184.

DOI: 10.1016/j.ijbiomac.2014.05.044

Google Scholar

[15] M. Muasher, M. Sain. The efficacy of photostabilizers on the color change of wood filled plastic composites. Pol. Deg. Stabil. 91 (5) (2006), 1156-1165.

DOI: 10.1016/j.polymdegradstab.2005.06.024

Google Scholar

[16] BS. Teixeira, RHL. Garcia, PYI. Takinami, NL. Del Mastro. Comparison of gamma radiation effects on natural corn and potato starches and modified cassava starch. Rad. Phys. Chem. 142 (2018), 44-49.

DOI: 10.1016/j.radphyschem.2017.09.001

Google Scholar

[17] S. Corpino, M.Caldera, F.Nichele, M.Masoero and N.Viola, Thermal design and analysis of a nanosatellite in low earth orbit. Acta Astronautica, 115 (2015), 247-261.

DOI: 10.1016/j.actaastro.2015.05.012

Google Scholar

[18] L. Jaques, Thermal design of the OUFTI-1 Nanosatellite, Master Thesis, University of Liege, (2009).

Google Scholar

[19] S. Piedra, M. Torres, et al. Thermal and Mechanical Numerical Analysis of the Primary Composite Structure of a CubeSat, in Proceedings of the XXVII International Materials Research Congress, (2018).

Google Scholar

[20] S. Piedra, M. Torres, S. Ledesma. Thermal Numerical Analysis of the Primary Composite Structure of a CubeSat. Aerospace, 6 (9), (2019), 97-111,.

DOI: 10.3390/aerospace6090097

Google Scholar

[21] SJ. Kang and HU Oh. On-Orbit Thermal Design and Validation of 1U Standardized CubeSat of STEP Cube Lab. Int. J. Aerosp. Eng, (2016), 4213189,.

Google Scholar

[22] M. Torres, S. Ledesma, et al. Manufacturing and Mechanical Characterization of Composite Panels for CubeSat Structures, in Proceedings of the XXVII International Materials Research Congress, (2018).

Google Scholar

[23] ANSYS Mechanical User's Guide. Available online: \url{https://www.sharcnet.ca/Software/Ansys/18.2.2/en-us/help/ai_sinfo/mech_intro.html} (accessed on January 25th 2019).

Google Scholar