[1]
K. Xu, C. C. Lin, X. Xie and A. Meijerink, Efficient and stable luminescence from Mn2+ in core and core−isocrystalline shell CsPbCl3 perovskite nanocrystals, Chem. Mater., 29, (2017), p.4265−4272.
DOI: 10.1021/acs.chemmater.7b00345
Google Scholar
[2]
I. Angeloni, W. Raja, A. Polovitsyn, F. De Donato, R. Proietti Zaccaria and I. Moreels, Band-edge oscillator strength of colloidal CdSe/CdS dot-in-rods: comparison of absorption and time-resolved fluorescence spectroscopy, Nanoscale, 9, (2017), p.4730–4738.
DOI: 10.1039/c6nr09021d
Google Scholar
[3]
A. R. AbouElhamd, K. A. Al-Sallal and A. Hassan, Review of Core/Shell Quantum Dots Technology Integrated into Building's Glazing, Energies, 12, (2019), 1058.
DOI: 10.3390/en12061058
Google Scholar
[4]
A. M. Kadim, Fabrication of Quantum Dots Light Emitting Device by Using CdTe Quantum Dots and Organic Polymer, Journal of Nano Research, 50, (2017), pp.48-56.
DOI: 10.4028/www.scientific.net/jnanor.50.48
Google Scholar
[5]
K. I. Hunter, J. T. Held, K. A. Mkhoyan, and U. R. Kortshagen, Nonthermal plasma synthesis of core/shell quantum dots: strained Ge/Si nanocrystals, ACS Appl. Mater. Interfaces, 9, (2017), p.8263−8270.
DOI: 10.1021/acsami.6b16170
Google Scholar
[6]
E. A. Lewis, R. C. Page, D. J. Binks, T. J. Pennycook, P. O. Brien, S. J. Haigh, Probing the core-shell-shell structure of CdSe/CdTe/CdS type II quantum dots for solar cell applications, Journal of Physics: Conference Series, 522, (2014), 012069.
DOI: 10.1088/1742-6596/522/1/012069
Google Scholar
[7]
M. K. Barma, B. B. Paramanik, D., A. Patra, Light harvesting and white-light generation in a composite of carbon dots and dye-encapsulated BSA-protein-capped gold nanoclusters, Chem. Eur. J., 22, (2016), p.1 – 8.
DOI: 10.1002/chem.201601849
Google Scholar
[8]
M. Balter, S. Li, M. Morimoto, S. Tang, J. Hernando, G. Guirado, M. Irie, F. M. Raymoc and J. Andreasson, Emission color tuning and white-light generation based on photochromic control of energy transfer reactions in polymer micelles, Chem. Sci., 2016,.
DOI: 10.1039/c6sc01623e
Google Scholar
[9]
F. Aldeek, L. Balan, G. Medjahdi, T. Roques-Carmes, J. Malval, C. Mustin, J. Ghanbaja, and R. Schneider, Enhanced optical properties of core/shell/shell CdTe/CdS/ZnO quantum dots prepared in aqueous solution, J. Phys. Chem. C, 113, (2009), p.19458–19467.
DOI: 10.1021/jp905695f
Google Scholar
[10]
G. R. Bhand, N. B. Chaure, Synthesis of CdTe, CdSe and CdTe/CdSe core/shell QDs from wet chemical colloidal method, Materials Science in Semiconductor Processing, 68, (2017), p.279–287.
DOI: 10.1016/j.mssp.2017.06.033
Google Scholar
[11]
H. Xue, R. Wu, Y. Xie, Q. Tan, D. Qin, H. Wu and W. Huang, Recent progress on solution-processed CdTe nanocrystals solar cells, Appl. Sci., 6, (2016), 197.
DOI: 10.3390/app6070197
Google Scholar
[12]
M. Banski, M. Chrzanowski, G. Zatryb, J. Misiewicz and A. Podhorodecki, Enhanced photoluminescence stability of CdS nanocrystals through a zinc acetate reagent, RSC Adv., 8, (2018), p.25417–25422.
DOI: 10.1039/c8ra03504k
Google Scholar
[13]
M. L. Landry, T. E. Morrell, T. K. Karagounis, C. Hsia, and C. Wang, Simple syntheses of CdSe quantum dots, J. Chem. Educ., 91, (2014), pp.274-279.
DOI: 10.1021/ed300568e
Google Scholar
[14]
P. Dutta and R. Beaulac, Photoluminescence quenching of colloidal CdSe and CdTe quantum dots by nitroxide free radicals, Chem. Mater., 28, (2016), p.1076–1084.
DOI: 10.1021/acs.chemmater.5b04423
Google Scholar
[15]
N. McElroy, R.C. Page, D. Espinbarro-Valazquez, E. Lewis, S. Haigh, P.O. Brien, D.J. Binks, Comparison of solar cells sensitised by CdTe/CdSe and CdSe/CdTe core/shell colloidal quantum dots with and without a CdS outer layer, Thin Solid Film, 560, (2014), pp.65-70.
DOI: 10.1016/j.tsf.2013.10.085
Google Scholar
[16]
S. Liu, W.Liu, J. Heng, W. Zhou, Y. Chen, S. Wen, D. Qin, L. Hou, D. Wang and H. Xu, Solution-processed efficient nanocrystal solar cells based on CdTe and CdS nanocrystals, Coatings, 8, (2018), pp.1-12.
DOI: 10.3390/coatings8010026
Google Scholar
[17]
B. Chen, J. Liu, Z. Cai, A. Xu, X. Liu, Z. Rong, D. Qin, W. Xu, L. Hou and Q. Liang, The effects of ZnTe:Cu back contact on the performance of CdTe nanocrystal solar cells with inverted structure, Nanomaterials, 9, (2019), pp.1-11.
DOI: 10.3390/nano9040626
Google Scholar
[18]
S. Alam, M. A. Pathan, K. A. Siddiquee, A. B. Islam, M. A. Gafur, D. K. Saha, M. Mori, T. Tambo, Optical and structural characterization of CdSe and CdTe layers and fabrication of a CdTe/CdSe structure, Optik International Journal for Light and Electron Optics, 124, (2013), pp.2165-2170.
DOI: 10.1016/j.ijleo.2012.06.072
Google Scholar
[19]
R. K. Pandey, M. Shikha, T. Sanjay, P. Sahu, B. P. Chandra, Comparative study of performance of CdTe, CdSe and CdS thin films-based photoelectrochemical solar cells, Solar Energy Materials and Solar Cells, 60, (2000), pp.59-72.
DOI: 10.1016/s0927-0248(99)00063-x
Google Scholar
[20]
A. M. Kadim, Applications of Cadmium Telluride (CdTe) in Nanotechnology, IntechOpen, London (UK) (Wales), (2019), DOI: http://dx.doi.org/10.5772/intechopen.85506.
Google Scholar
[21]
A.M. Kadim et al., Fabrication of Hybrid QDOLEDs from Core/Shell/Shell QDs and Conductive Organic Polymers, Nano Hybrids and Composites, 22, 2018, pp.11-22.
DOI: 10.4028/www.scientific.net/nhc.22.11
Google Scholar