[1]
V. Koncherry, P. Potluri, A. Fernando, Multifunctional Carbon Fibre Tapes for Automotive Composites, Applied Composite Materials, (2016).
DOI: 10.1007/s10443-016-9550-z
Google Scholar
[2]
M. Turk, I. Hamerton, D.S. Ivanov, Ductility potential of brittle epoxies: Thermomechanical behaviour of plastically-deformed fully-cured composite resins, Polymer, 120 (2017) 43-51.
DOI: 10.1016/j.polymer.2017.05.052
Google Scholar
[3]
J.W.V.d. Wiel, Future of Automotive Design & Materials Trends and Developments in Design and Materials, Automatic Technology Centre, acemr.eu, (2012).
Google Scholar
[4]
S.A. Bello, J.O. Agunsoye, S.B. Hassan, M.G. Zebase Kana, I.A. Raheem, Epoxy Resin Based Composites, Mechanical and Tribological Properties: A Review, Tribology in Industry, 37 (2015) 500-524.
Google Scholar
[5]
M. Jawaid, H.P.S. Abdul Khalil, A. Hassan, R. Dungani, A. Hadiyane, Effect of jute fibre loading on tensile and dynamic mechanical properties of oil palm epoxy composites, Composites Part B: Engineering, 45 (2013) 619-624.
DOI: 10.1016/j.compositesb.2012.04.068
Google Scholar
[6]
M.M. Davoodi, S.M. Sapuan, A. Aidy, N.A. Abu Osman, A.A. Oshkour, W.A.B. Wan Abas, Development process of new bumper beam for passenger car: A review, Materials & Design, 40 (2012) 304-313.
DOI: 10.1016/j.matdes.2012.03.060
Google Scholar
[7]
X. Zhang, O. Alloul, Q. He, J. Zhu, M.J. Verde, Y. Li, S. Wei, Z. Guo, Strengthened magnetic epoxy nanocomposites with protruding nanoparticles on the graphene nanosheets, Polymer, 54 (2013) 3594-3604.
DOI: 10.1016/j.polymer.2013.04.062
Google Scholar
[8]
S. Li, C. Cui, Enhancing the mechanical properties of epoxy resin by addition of an amino-terminated hyperbranched polymer grown on glass fiber, Journal of Materials Science, 51 (2016) 1829-1837.
DOI: 10.1007/s10853-015-9488-9
Google Scholar
[9]
J.O. Agunsoye, S.A. Bello, L. Bello, M.M. Idehenre, Assessment of mechanical and wear properties of epoxy based hybrid composites, Advances in Production Engineering & Management, 11 (2016) 5-14.
DOI: 10.14743/apem2016.1.205
Google Scholar
[10]
K. Elangovan, K.K. Iynesh kumar, B. Kothandaraman, Effect of glass microspheres and aluminium fi ller in the properties of epoxy and modifi ed epoxy matrix composite for rapid tooling applications, Int J Plast Technol 13 (2009) 38-46.
DOI: 10.1007/s12588-009-0005-3
Google Scholar
[11]
P.C. Gope, D.K. Rao, Fracture behaviour of epoxy biocomposite reinforced with short coconut fibres (Cocos nucifera) and walnut particles (Juglans regia L.), Journal of Thermoplastic Composite Materials, (2014).
DOI: 10.1177/0892705714556835
Google Scholar
[12]
S. Rajesh, B. VijayaRamnath, C. Elanchezhian, N. Aravind, V.V. Rahul, S. Sathish, Analysis of Mechanical Behavior of Glass Fibre/ Al2O3-SiC Reinforced Polymer Composites, Procedia Engineering, 97 (2014) 598-606.
DOI: 10.1016/j.proeng.2014.12.288
Google Scholar
[13]
B.B. Johnsen, A.J. Kinloch, R.D. Mohammed, A.C. Taylor, S. Sprenger, Toughening mechanisms of nanoparticle-modified epoxy polymers, Polymer, 48 (2007) 530-541.
DOI: 10.1016/j.polymer.2006.11.038
Google Scholar
[14]
J. Karger-Kocsis, O. Gryshchuk, J. Fröhlich, R. Mülhaupt, Interpenetrating vinylester/epoxy resins modified with organophilic layered silicates, Composites Science and Technology, 63 (2003) 2045-2054.
DOI: 10.1016/s0266-3538(03)00110-6
Google Scholar
[15]
T. Kawaguchi, R.A. Pearson, The effect of particle–matrix adhesion on the mechanical behavior of glass filled epoxies. Part 2. A study on fracture toughness, Polymer, 44 (2003) 4239-4247.
DOI: 10.1016/s0032-3861(03)00372-0
Google Scholar
[16]
S.A. Bello, J.O. Agunsoye, J.A. Adebisi, F.O. Kolawole, S.B. Hassan: Quasicrystal Al (1xxx)/Carbonized Coconut Shell Nanoparticles via Ball Milling: A Novel Synthesis and Characterization, in: proceedings of the pp.
DOI: 10.1557/adv.2018.369
Google Scholar
[17]
S.B. Hassan, J.O. Agunsoye, S.A. Bello, Ball Milling Synthesis of Al (1050) Particles: Morphological Study and Particle Size Determination, Industrial Engineering Letters, 5 (2015) 22-27.
Google Scholar
[18]
S.A. Bello, J.O. Agunsoye, J.A. Adebisi, F.O. Kolawole, N.K. Raji, S.B. Hassan, Quasi Crystal Al (1xxx)/Carbonised Coconut Shell Nanoparticles: Synthesis and Characterisation, MRS Advances, 3 (2018) 2559-2571.
DOI: 10.1557/adv.2018.369
Google Scholar
[19]
S.A. Bello, J.O. Agunsoye, J.A. Adebisi, J.E. Anyanwu, A.A. Bamigbaiye, S.B. Hassan, Potential of Carbonised Coconut Shell as a Ball-Milling Interface for Synthesis of Aluminium (1xxx) Nanoparticles, Annals of Faculty of Engineering, 15 (2017) 149-157.
DOI: 10.1557/adv.2018.369
Google Scholar
[20]
S.A. Bello, J.O. Agunsoye, J.A. Adebisi, B.H. Suleiman, Effects of Aluminium Particles on Mechanical and Morphological Properties of Epoxy Nanocomposites, Acta Periodica Technological, 48 (2017) 25-38.
DOI: 10.2298/apt1748025b
Google Scholar
[21]
S.A. Bello, I.A. Raheem, N.K. Raji, Study of tensile properties, fractography and morphology of aluminium (1xxx)/coconut shell micro particle composites, Journal of King Saud University - Engineering Sciences, 29 (2017) 269-277.
DOI: 10.1016/j.jksues.2015.10.001
Google Scholar
[22]
S.T. Cholake, M. R., R.K. Raman, Y.B. Singh, X. Zhao, S. Rizkalla, S. Bandyopadhyay, Quantitative Analysis of Curing Mechanisms of Epoxy Resin by Mid- and Near-Fourier Transform Infra Red Spectroscopy, Defence Science Journal, 64 (2014) 314-32.
DOI: 10.14429/dsj.64.7326
Google Scholar
[23]
H.S. Barbara, Infrared Spectroscopy: Fundamentals and Applications, John Wiley &Son, University of Technology, Sydney, Australia, (2004).
Google Scholar
[24]
G. Nikolic, S. Zlatkovic, M. Cakic, S. Cakic, C. Lacnjevac, Z. Rajic, Fast Fourier transform IR characterization of epoxy GY systems crosslinked with aliphatic and cycloaliphatic EH polyamine adducts, Sensors (Basel), 10 (2010) 684-96.
DOI: 10.3390/s100100684
Google Scholar
[25]
O.M. Ighodaro, O.A. Akinloye, R.N. Ugbaja, S.O. Omotainse, O. Faokunla, FT-IR analysis of Sapium ellipticum (Hochst) pax ethanol leaf extract and its inhibitory effects on pancreatic α-amylase and intestinal α-glucosidase activities in vitro, Egyptian Journal of Basic and Applied Sciences.
DOI: 10.1016/j.ejbas.2016.09.003
Google Scholar
[26]
G.G. María, C.C. Juan, B. Juan, Applications of FTIR on Epoxy Resins –Identification, Monitoring the Curing Process, Phase Separation and Water Uptake, University Carlos III of Madrid, Spain, n.d.
Google Scholar
[27]
S.F. Brian, J.H. Anthony, W.G.S. Peter, R.T. Austin, Textbook of Practical Organic Chemistry,5th, John Wiley& Sons, New York, (1989).
Google Scholar
[28]
G.H. Jeffery, J. Basset, J. Mendham, R.C. Denney, VOGEL's Textbook of Quantitative Chemical Analysis,5, Longman Scientific and Technical, New York, (1989).
Google Scholar
[29]
N.H. Mohd Hirmizi, M. Abu Bakar, W.L. Tan, N.H.H. Abu Bakar, J. Ismail, C.H. See, Electrical and Thermal Behavior of Copper-Epoxy Nanocomposites Prepared via Aqueous to Organic Phase Transfer Technique, Journal of Nanomaterials, 2012 (2012) 1-11.
DOI: 10.1155/2012/219073
Google Scholar
[30]
F.M.d.S. Lucas, Ö. Andreas, A. Robert, Handbook of Adhesion Technology,Springer-Verlag Berlin Heidelberg, (2011).
Google Scholar
[31]
A.J. Kinloch, A.C. Taylor, The mechanical properties and fracture behaviour of epoxy-inorganic micro- and nano-composites, Journal of Materials Science, 41 (2006) 3271-3297.
DOI: 10.1007/s10853-005-5472-0
Google Scholar
[32]
T.B. Tolle, D.P. Anderson, Morphology development in layered silicate thermoset nanocomposites, Composites Science and Technology, 62 (2002) 1033-1041.
DOI: 10.1016/s0266-3538(02)00039-8
Google Scholar
[33]
A.A. Asif, K.Y. Rhee, S.J. Park, D. Hui, Epoxy Clay Nanocomposites – Processing, Properties and Applications: A Review, Composites Part B: Engineering, 45 (2013) 308-320.
DOI: 10.1016/j.compositesb.2012.04.012
Google Scholar
[34]
E.J. Mittemeijer, Fundamentals of Materials Science_The Microstructure–Property Relationship Using Metals as Model Systems,1, Springer-Verlag Berlin Heidelberg, (2011).
Google Scholar